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In this article we present a method to determine the band spectrum, band gaps, and

discrete energy levels, of a one-dimensional photonic crystal with localized impurities.

For one-dimensional crystals with piecewise constant refractive indices we develop an

algorithm to recover the refractive index distribution from the period map. Finally, we

derive the relationship between the period map and the scattering matrix containing

the information on the localized modes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Photonic crystals are nanostructures in which, as in a
semiconductor crystal, the periodic variation of its
physical properties, i.e. its electric permittivity or, equiva-
lently, its refractive index, leads to photonic bands of
frequencies at which light can travel and be scattered, and
photonic band gaps of frequencies at which light cannot
pass. This kind of crystal may be observed in nature in the
frustules of some unicellular algae (diatoms) [1] or on the
surface of butterfly wings [2]. The band structure is also
the reason of some unusual optical properties such as
diffractive reflection and refraction, supercollimation, and
the superprism effect [3].

Introducing a disorder in the periodic dielectric
structure by doping the crystal with an impurity or by
locally altering the crystal periodicity, does not affect the
band structure of the electromagnetic spectrum, but may
create localized modes within band gaps at which
stationary waves may occur [4,5].
ll rights reserved.
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The main purpose of photonic crystal modeling is the
design of devices with prescribed spectral properties such
as allowed and forbidden frequency intervals, based on
the identification of the spatial refractive index variation
using constraints on the frequency spectrum. Nowadays it
is possible to design photonic crystal fibers [6,7] introdu-
cing impurities allowing us to confine light (resonant
cavities and laser Fabry–Perot cavities [8]) or to create
preferred pathways to guide it (waveguides) [9–11].

Standard optical fibers rely on light being guided by
the physical law known as total internal reflection (TIR) or
index guiding. In order to achieve TIR in these fibers, which
are formed from dielectrics or semiconductors, it is
necessary that the refractive index of the core exceeds
that of the surrounding media. In photonic crystal fibers
light is constrained to propagate along photonic band
gaps, while the core is a different medium with a smaller
refractive index. These fibers have properties important to
telecommunication that differ from those of standard
fibers: they allow bending by larger angles and light
dissipation is much more negligible.

Other important applications are multiplexing, de-
multiplexing and switching. Using negative refraction,
supercollimation and the superprism effect, an optical de-
multiplexer has been designed by a research group at the
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Georgia Institute of Technology [12], while the Kerr effect
permits one to design basic components of integrated
optics like optical transistors [13].

A fundamental problem in this field is the design of a
photonic crystal with specified properties; engineering
design is formally a type of mathematical Inverse
Problem: given the allowed frequencies and the photonic
path at each allowed frequency, what is the corresponding
refractive index as a function of the location in the
crystal? In the literature the Level Set Method [14,15] has
emerged as an excellent tool that can contribute to
algorithms for the optimization of boundaries and edges.
A successful design method for photonic crystals will have
a big impact in computer circuitry. The replacement of the
electric current with a photonic flow will enable us to
build future optical integrated circuits that are much
faster, use much less energy, and dissipate much less heat.

In this paper we deal with one-dimensional photonic
crystals where, except for impurity variations, the refrac-
tive index is periodic in the direction of propagation of the
light. In the purely periodic case there have traditionally
been two methods to compute the bands and band gaps,
namely the transfer matrix method [16,17] and the plane
wave expansion method [18,5]. In this article, as in
[19,20], we apply the spectral theory of Hill’s equation
[21–23], modified to be applicable to Helmholtz’s equa-
tion with periodic boundary conditions, to compute the
bands and band gaps as those frequency intervals where
the so-called Hill discriminant is smaller or larger than 2
in absolute value, respectively. This Hill discriminant
appears as the trace of a real 2� 2 matrix, the period
map, which relates the initial data of the solution of
Helmholtz’s equation at the right endpoint of a period to
those at a left endpoint. Contrary to [19,20], we do not
derive conditions for having empty band gaps. For one-
dimensional crystals composed of finitely many different
materials with constant refractive index, which is a
suitable model for describing heterojunctions such as
AlGa–AlAs or InAs–AlSb, we compute the Hill discrimi-
nant and hence the band spectrum in closed form.
Conversely, in this ‘‘piecewise constant’’ case we evaluate
the refractive index as a function of position from the
spectral data in two steps:
1.
 We develop a method to recover the refractive index of
such material as a function of position from the period
map for one period. This period may have the same
material composition as the periodic crystal or may
contain the impurities.
2.
 We describe a method to evaluate the period map from
the scattering matrix containing the information on
the localized modes.
This method allows us, in principle, to reconstruct a one-
dimensional crystal consisting of finitely many materials
with constant refractive index from the band spectrum
and the scattering matrix, provided the impurities, now
consisting of a modified arrangement of the material
layers, are confined to one period.
2. Physical and mathematical model

The propagation of light in a photonic crystal is
described by Maxwell’s equations. Let Eðr; tÞ and Hðr; tÞ
stand for the electric and magnetic fields, and Dðr; tÞ and
Bðr; tÞ for the displacement and magnetic induction fields,
as a function of position r and time t. Assume photonic
crystals to be linear, isotropic, magnetically homogeneous,
and lossless materials without free charges and current
densities, so that

Dðr; tÞ ¼ �0�ðrÞEðr; tÞ; Bðr; tÞ ¼ m0mHðr; tÞ, (2.1)

where the electric permittivity �ðrÞ is real-valued. Limiting
ourselves to harmonic modes,

Hðr; tÞ ¼ HðrÞeiot ; Eðr; tÞ ¼ EðrÞeiot , (2.2)

Maxwell’s equations become

r � HðrÞ ¼ �io�0�ðrÞEðrÞ, (2.3)

r � EðrÞ ¼ iom0mHðrÞ, (2.4)

r � ð�ðrÞEðrÞÞ ¼ 0, (2.5)

r � ðmHðrÞÞ ¼ 0, (2.6)

which can be decoupled as follows:

1

mr � ½r � EðrÞ� ¼ Z�ðrÞEðrÞ, (2.7)

r � ½�ðrÞEðrÞ� ¼ 0, (2.8)

r �
1

�ðrÞ
r � HðrÞ

� �
¼ ZmHðrÞ, (2.9)

r � ½mHðrÞ� ¼ 0, (2.10)

where m is the constant magnetic permeability and
Z ¼def o2=c2 serves as the spectral parameter. Let nðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
�ðrÞm

p
denote the refractive index.

Focusing on a one-dimensional pure photonic crystal, if
we consider TEM modes, i.e., polarized light propagating
along the periodic direction and E and H parallel to the yz

plane (Fig. 1), it is straightforward to see that the electric
eigenvalue problem (2.7)–(2.8) turns into the Helmholtz
equation:

�c00ðZ; xÞ ¼ Zn2ðxÞcðZ; xÞ, (2.11)

where x 2 R, the prime denotes differentiation with
respect to x, the refractive index nðxÞ is a periodic function
with period p40, i.e., nðxþ pÞ � nðxÞ, and cðZ; xÞ is the
polarized component of the electric field.

3. Hill discriminant and period map

The spectral theory of Hill’s equation (i.e., the one-
dimensional Schrödinger equation with periodic boundary
conditions) is well developed [21–23] and can obviously
be applied to describe one-dimensional solids and
semiconductors without impurities. In this section we
give the theoretical background on the one-dimensional
Helmholtz equation with periodic boundary conditions
[i.e. Eq. (2.11)] to describe a one-dimensional photonic
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Fig. 1. In a one-dimensional pure photonic crystal the dielectric medium

is periodic only in one direction (x-axis). Polarized light propagates along

the x-axis, while the magnetic field H and the electric field E are directed

along the y- and z-axes, respectively, and depend only on the x-variable

(TEM modes).
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crystal without impurities. For the proofs, which closely
mimic those for Hill’s equation, we refer to [21–23].

There exist unique linearly independent solutions
yðZ; xÞ and jðZ; xÞ of Eq. (2.11), called elementary solutions,
satisfying the initial conditions

yðZ;0Þ ¼ 1; y0ðZ;0Þ ¼ 0, (3.1a)

jðZ;0Þ ¼ 0; j0ðZ;0Þ ¼ 1. (3.1b)

Now assume cðxÞc0 is a solution of Eq. (2.11) satisfying
the t-periodic or Born–Von Kármán conditions

cðZ; pÞ ¼ tcðZ;0Þ, (3.2a)

c0ðZ; pÞ ¼ tc0ðZ;0Þ, (3.2b)

for some constant 0at 2 C. Let us write the general
solution cðZ; xÞ of Eq. (2.11) satisfying conditions (3.2) as a
linear combination of the elementary solutions yðZ; xÞ and
jðZ; xÞ. Then the linear combination

c1yðZ; xÞ þ c2jðZ; xÞ

satisfies the boundary conditions (3.2) if and only if the
linear system

t� yðZ; pÞ �jðZ; pÞ
�y0ðZ; pÞ t�j0ðZ; pÞ

 !
c1

c2

 !
¼

0

0

� �
has a non-trivial solution, i.e., if and only if the system
determinant

t2 � ½yðZ; pÞ þj0ðZ; pÞ�tþ 1 (3.3)

vanishes. Note that the Wronskian w ¼ yj0 � y0j ¼ 1.
The fundamental matrix of Eq. (2.11) evaluated at x ¼ p

is referred to as the period map

MðZÞ ¼def yðZ; pÞ jðZ; pÞ
y0ðZ; pÞ j0ðZ; pÞ

 !
, (3.4)

and its trace

DðZÞ ¼ yðZ; pÞ þj0ðZ;pÞ, (3.5)

is the Hill discriminant. Making use of condition (3.3), we
have

t2 �DðZÞtþ 1 ¼ 0, (3.6)
which implies that

t1t2 ¼ 1; t1 þ t2 ¼ DðZÞ, (3.7)

being t1 and t2 the roots of Eq. (3.6). As a result, from (3.7)
we get

DðZÞ ¼ tþ t�1, (3.8)

where t is a root of Eq. (3.6). Generalizing the Born–Von
Kármán condition to m periods we get

cðZ; xþmpÞ ¼ tmcðZ; xÞ, (3.9)

from which we can easily see that solutions ca0
satisfying (3.2), are unbounded as x!þ1 if jtj41 and
as x!�1 if jtjo1. Therefore the boundedness of such
solutions c requires jtj ¼ 1. We thus arrive at the Bloch
representation

cðZ; xÞ ¼ eikðZÞyðxÞwðZ; xÞ,

where yðxÞ ¼
R x

0 nðx̂Þdx̂ is a travel time parameter, kðZÞ is
the quasi-momentum to be discussed shortly, and wðZ; xÞ
is periodic in x with period p. Moreover, Hill’s discriminant
becomes

DðZÞ ¼ t1 þ t�1
1 ¼ eikq þ e�ikq ¼ 2 cosðkqÞ, (3.10)

where q ¼ yðpÞ is the travel time in one period. Hence [22,
Chapter XXI, 21,23] there exist bounded solutions if and
only if DðZÞ 2 ½�2;2�. Outside this range there is no
physical solution, because the corresponding waves would
have infinite energy.

In the sequel we shall write many quantities in
terms of the quasimomentum k which is given in terms
of Z and the one-period travel time q by Firsova’s Formula
[25]

kðZÞ ¼ 1

q
arcsin

i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðZÞ2 � 4

q� �
. (3.11)

Formula (3.11) defines a conformal mapping from the
complex Z-plane cut along the bands onto the upper half
complex k-plane, where the bands approached from above
correspond to the positive real k-line and the bands
approached from below to the negative real k-line. When
writing (2.11) in the travel time parameter, under condi-
tions of sufficient smoothness on the refractive index nðxÞ

one can write (2.11) as Hill’s equation in the new position
variable y, where the part of momentum is now played by
the quasimomentum. In particular, if nðxÞ � 1, we
have q ¼ p and kðZÞ ¼ i

ffiffiffiffiffiffiffi
�Zp

, which is the usual
momentum.

For the homogeneous medium where nðxÞ ¼ n40, we
have

yðZ; x;nÞ ¼ cosðn
ffiffiffi
Z
p

xÞ; jðZ; x;nÞ ¼
sinðn

ffiffiffiZp xÞ

n
ffiffiffiZp ,

so that

DðZ;nÞ ¼ 2 cosðn
ffiffiffi
Z
p

pÞ. (3.12)
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Then the zeros fZjg
1
j¼0 of DðZ;nÞ ¼ 2 and fZ̃jg

1
j¼1 of DðZ;nÞ ¼

�2 are given by

Zj ¼

jp
np

� �2

; j even;

ðjþ 1Þp
np

� �2

; j odd;

8>>>><>>>>:

Z̃j ¼

ðj� 1Þp
np

� �2

; j even;

jp
np

� �2

; j odd:

8>>>><>>>>:
Thus (the interiors of) the bands are

ðj� 1Þp
np

� �2

;
jp
np

� �2
 !

; j ¼ 1;2;3; . . . ,

whereas the band gaps are empty.

4. Piecewise constant refractive index

The piecewise constant case perfectly fits the descrip-
tion of a one-dimensional photonic crystal, i.e. regular
arrays of different dielectric materials layered along one
spatial direction as displayed in Fig. 2. We then have
nðxÞ ¼ nj ðbj�1oxobj; j ¼ 1; . . . ;mÞ, where 0 ¼
b0ob1o � � �obm ¼ p and aj ¼ bj � bj�1 ðj ¼ 1; . . . ;mÞ. Then
any solution cjðZ; xÞ of (2.11) on ðbj�1; bjÞ satisfies

cjðZ; xÞ ¼ c1jyðZ; x� bj�1;njÞ þ c2jjðZ; x� bj�1;njÞ, (4.1a)

c0jðZ; xÞ ¼ �ðnj
ffiffiffiZp Þ2c1jjðZ; x� bj�1;njÞ þ c2jyðZ; x� bj�1;njÞ,

(4.1b)

where j ¼ 1; . . . ;m. The requirement that cðZ; xÞ is con-
tinuously differentiable at the points b1; . . . ; bm�1 leads to
the identities

c1j

c2j

 !
¼ Aj�1ðZÞ

c1;j�1

c2;j�1

 !
; j ¼ 2; . . . ;m,

where

Aj�1ðZÞ ¼
yðZ; aj�1;nj�1Þ jðZ; aj�1;nj�1Þ

�ðnj�1
ffiffiffiZp Þ2jðZ; aj�1;nj�1Þ yðZ; aj�1;nj�1Þ

 !
.

Fig. 2. Example of a periodic structure with period p in the case of a piecewise

layer photonic crystal with different layer amplitudes.
Thus

c1m

c2m

 !
¼ Am�1ðZÞ . . .A2ðZÞA1ðZÞ

c11

c21

 !
.

On the other hand,

cðZ;pÞ
c0ðZ; pÞ

 !
¼ AmðZÞ

c1m

c2m

 !
.

Consequently,

cðZ;pÞ
c0ðZ; pÞ

 !
¼MðZÞ

cðZ;0Þ
c0ðZ;0Þ

 !
,

where the period map MðZÞ is defined by

MðZÞ ¼ AmðZÞAm�1ðZÞ . . .A2ðZÞA1ðZÞ. (4.2)

Having c ¼ y and c ¼ j, respectively, and using (3.1) we
get

MðZÞ ¼
yðZ; pÞ jðZ; pÞ
y0ðZ;pÞ j0ðZ; pÞ

 !
. (4.3)

Hence the Hill discriminant is given by

DðZÞ ¼ Tr½MðZÞ� ¼ yðZ; pÞ þj0ðZ; pÞ. (4.4)

In various special cases the function DðZÞ allows us to
evaluate the crystal’s band structure (Fig. 3). For m ¼ 2 we
get

DðZÞ ¼ 2 cosðn2a2
ffiffiffi
Z
p
Þ cosðn1a1

ffiffiffi
Z
p
Þ

�
�

1

2

n1

n2
þ

n2

n1

� �
sinðn2a2

ffiffiffiZp Þ sinðn1a1
ffiffiffiZp Þ�. (4.5)

For m ¼ 3 we get

DðZÞ ¼ 2 cosðn3a3
ffiffiffiZp Þ cosðn2a2

ffiffiffiZp Þ cosðn1a1
ffiffiffiZp Þ�

�
1

2

n1

n2
þ

n2

n1

� �
cosðn3a3

ffiffiffiZp Þ sinðn2a2
ffiffiffiZp Þ sinðn1a1

ffiffiffiZp Þ
�

1

2

n1

n3
þ

n3

n1

� �
sinðn3a3

ffiffiffiZp Þ cosðn2a2
ffiffiffiZp Þ sinðn1a1

ffiffiffiZp Þ
�

1

2

n2

n3
þ

n3

n2

� �
sinðn3a3

ffiffiffiZp Þ sinðn2a2
ffiffiffiZp Þ cosðn1a1

ffiffiffiZp Þ�.

In general, the period map MðZÞ has the form

MðZÞ ¼
Y

j¼m;m�1;...;1

cosðnjaj
ffiffiffiZp Þ sinðnjaj

ffiffiffiZp Þ
nj

ffiffiffiZp
�nj

ffiffiffiZp sinðnjaj
ffiffiffiZp Þ cosðnjaj

ffiffiffiZp Þ
0B@

1CA,
constant refractive index. The figure illustrates a one-dimensional three
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Fig. 3. Graph of DðZÞ as a function of
ffiffiffiZp for a three layer photonic crystal ðm ¼ 3Þ, where n1 ¼ 1:5, n2 ¼ 1, n3 ¼ 2, a1 ¼ 1, a2 ¼ 2, and a3 ¼ 0:8. On the right

the allowed bands are displayed in dark and white.
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which implies

lim
Z!0þ

MðZÞ ¼
Y

j¼m;m�1;...;1

1 aj

0 1

 !

¼
1 a1 þ � � � þ am

0 1

 !
. (4.6)

Therefore the crystal period p equals the non-diagonal
entry M12

ðZÞ of the period map as Z! 0þ. Moreover, we
easily see thatffiffiffiZp 0

0 1

 !
MðZÞ

1ffiffiffiZp 0

0 1

0B@
1CA

¼
Y

j¼m;m�1;...;1

cosðnjaj
ffiffiffiZp Þ sinðnjaj

ffiffiffiZp Þ
nj

�nj sinðnjaj
ffiffiffiZp Þ cosðnjaj

ffiffiffiZp Þ
0BB@

1CCA, (4.7)

where the right-hand side is called modified period map,
has determinant 1 and whose entries are almost periodic
polynomials in

ffiffiffiZp . The diagonal entries are real even
functions of

ffiffiffiZp and the off-diagonal entries are real odd
functions of

ffiffiffiZp vanishing at
ffiffiffiZp ¼ 0.

Let us write

mj ¼ njaj40; z ¼
ffiffiffiZp ,

MðzÞ ¼
z 0

0 1

 !
MðZÞ

z�1 0

0 1

 !
,

where MðzÞ is the modified period map. Let us write the
entries of MðzÞ in the following form:

M11ðzÞ ¼ þ
X

c11
s2 ;...;sm

cosððm1 þ s2m2 þ � � � þ smmmÞzÞ,

(4.8a)

M12ðzÞ ¼ þ
X

c12
s2 ;...;sm

sinððm1 þ s2m2 þ � � � þ smmmÞzÞ,

(4.8b)
M21ðzÞ ¼ �
X

c21
s2 ;...;sm

sinððm1 þ s2m2 þ � � � þ smmmÞzÞ,

(4.8c)

M22ðzÞ ¼ þ
X

c22
s2 ;...;sm

cosððm1 þ s2m2 þ � � � þ smmmÞzÞ,

(4.8d)

where we sum over all sign patterns ðs2; . . . ;smÞ in the
2m�1 element set f�1;þ1gm�1. Then the Fourier spectrum
of the entries of the modified period map MðzÞ is given by

Xm
j¼1

sjnjaj : sj ¼ �1

8<:
9=;.

Therefore it has at most 2m points and its maximum is
m1 þ � � � þ mm. Using the addition formulas of trigonome-
try, we get the recurrence relations

c11
s2 ;...;sm�1 ;�1 ¼

1

2
c11
s2 ;...;sm�1

�
1

2nm
c21
s2 ;...;sm�1

,

c22
s2 ;...;sm�1 ;�1 ¼

1

2
c22
s2 ;...;sm�1

�
1

2
nmc12

s2 ;...;sm�1
,

c12
s2 ;...;sm�1 ;�1 ¼

1

2
c12
s2 ;...;sm�1

�
1

2nm
c22
s2 ;...;sm�1

,

c21
s2 ;...;sm�1 ;�1 ¼

1

2
c21
s2 ;...;sm�1

�
1

2
nmc11

s2 ;...;sm�1
.

We thus easily recover the expression

c1;...;1 ¼
def

c11
1;...;1 c12

1;...;1

c21
1;...;1 c22

1;...;1

0@ 1A
¼

1

2m�1

1 1=nm

nm 1

 !
. . .

1 1=n1

n1 1

 !
, (4.9)
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where the subscript 1; . . . ;1 have m� 1 entries and the
product matrix has positive entries but zero determinant.
More generally,

cs2 ;...;sm ¼
def

c11
s2 ;...;sm

c12
s2 ;...;sm

c21
s2 ;...;sm

c22
s2 ;...;sm

0@ 1A
¼

1

2m�1

1
sm

nm

smnm 1

0B@
1CA . . .

1
s2

n2

s2n2 1

0B@
1CA 1

1

n1

n1 1

0B@
1CA. (4.10)

By induction on the number of factors we thus easily
prove that

c11
s2 ;...;sm

c12
s2 ;...;sm

¼
c21
s2 ;...;sm

c22
s2 ;...;sm

¼ n1,

c21
s2 ;...;sm

c11
s2 ;...;sm

¼
c22
s2 ;...;sm

c12
s2 ;...;sm

¼ smnm. (4.11)

4.1. Recovery of the refractive index

In this subsection we propose a method to determine
the refractive indices nj and the layer amplitudes aj from
the modified period map MðZÞ in the piecewise constant
case. This kind of heterostructure generally consists of no
more than three layers per period [9,26]. An example of
such a periodic structure is depicted in Fig. 2.

4.1.1. Two-layer photonic crystals

Let us consider a crystal where in each period there are
two different media with refractive indices n1 and n2,
respectively, where n1an2 (Fig. 4).
�

Fig
InA
We start from the modified period map M2ðzÞ and
focus on its Fourier spectrum. For a two-layer photonic
crystal its Fourier spectrum will be the 22 element set

f�ðm1 þ m2Þ;�ðm1 � m2Þg ¼ fm̃1; m̃2; m̃3; m̃4g.
�
 We then consider the maximum of the Fourier
spectrum:

m̃i ¼ n1a1 þ n2a2 ¼ m1 þ m2, (4.12)

for some i 2 f1;2;3;4g.
. 4. Example of a heterostructure made of two semiconductor crystals

s–AlSb with different refractive indices.
�
 Let cþ be the corresponding coefficient matrix. We
evaluate n1 and n2 from Eqs. (4.11):

c11
þ

c12
þ

¼
c21
þ

c22
þ

¼ n1;
c21
þ

c11
þ

¼
c22
þ

c12
þ

¼ n2. (4.13)
�
 We consider the following system:

m1 þ m2 ¼ m̃i;

m1 � m2 ¼ m̃j

(

for any j 2 f1;2;3;4g different from i, so that we
get

mðjÞ2 ¼
m̃i � m̃j

2
; jai. (4.14)
�
 For any computed mðjÞ2 (for a two-layer photonic crystal
there are three of them), we calculate the reduced
modified period map MðjÞ1 ðzÞ corresponding to the
virtual one-layer photonic crystal

MðjÞ1 ðzÞ ¼
cosðmðjÞ2 zÞ �

sinðmðjÞ2 zÞ

n2

n2 sinðmðjÞ2 zÞ cosðmðjÞ2 zÞ

0BB@
1CCAM2ðzÞ. (4.15)
�
 We select the period map which has a corresponding
two-element Fourier spectrum (which is consistent
with the one-layer virtual photonic crystal) and whose
corresponding coefficient matrix satisfies the following
relations:

c11

c12
¼

c21

c22
¼ n1;

c21

c11
¼

c22

c12
. (4.16)

Such a period map turns out to be unique
and consequently we find the correct q ¼

def mðjÞ2 ,
which corresponds to the uniquely found
MðjÞ1 ðzÞ.

�
 We compute a2 ¼ q=n2 and finally we get the value of

a1 from Eq. (4.12).

Alternatively one can compute a2 using the crystal period
knowledge (see Eq. (4.6)) and realizing that a1 þ a2 ¼ p.

Example 4.1. Consider

n1 ¼ 1; n2 ¼ 0:5; a1 ¼ 1; a2 ¼ 3.

Then m1 ¼ 1, m2 ¼ 1:5 and using Eqs. (4.8a)–(4.8d) and
(4.10), it is straightforward to build the corresponding
modified period map:

M11ðzÞ ¼ þ
1
2½3 cosð2:5zÞ � cosð0:5zÞ�,

M12ðzÞ ¼ þ
1
2½3 sinð2:5zÞ þ sinð0:5zÞ�,

M21ðzÞ ¼ �
1
2½1:5 sinð2:5zÞ � 0:5 sinð0:5zÞ�,

M22ðzÞ ¼ þ
1
2½1:5 cosð2:5zÞ þ 0:5 cosð0:5zÞ�.
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The coefficient matrices correspond to the Fourier spec-
trum as follows:

þ 2:5/
1

2

3 3

1:5 1:5

 !
; �2:5/

1

2

3 �3

�1:5 1:5

 !
,

þ 0:5/
1

2

�1 1

�0:5 0:5

 !
; �0:5/

1

2

�1 �1

0:5 0:5

 !
,

where ðm1 þ s2m2Þ/cs2
. We now perform the inversion:
�
 find the Fourier spectrum: f0:5;�0:5;2:5;�2:5g;

�
 focus on its maximum: m̃2 ¼ 2:5;

�
 evaluate

n1 ¼
c11
þ

c12
þ

¼
c21
þ

c22
þ

¼ 1; n2 ¼
c21
þ

c11
þ

¼
c22
þ

c21
þ

¼ 0:5;
�
 compute m̃j
2 for j ¼ 1;2;4:

m̃1
2 ¼ 1; m̃2

2 ¼ 1:5; m̃4
2 ¼ 2:5;
�
 we calculate MðjÞ1 ðzÞ for j ¼ 1;2;4:

½MðjÞ1 �11ðzÞ ¼ 6 cos½ðm̃j
2 � 2:5Þz� � 2 cos½ðm̃j

2 � 0:5Þz�,

½MðjÞ1 �12ðzÞ ¼ �6 sin½ðm̃j
2 � 2:5Þz� � 2 sin½ðm̃j

2 � 0:5Þz�,

½MðjÞ1 �21ðzÞ ¼ 3 sin½ðm̃j
2 � 2:5Þz� � sin½ðm̃j

2 � 0:5Þz�,

½MðjÞ1 �22ðzÞ ¼ 3 cos½ðm̃j
2 � 2:5Þz� þ cos½ðm̃j

2 � 0:5Þz�,

and it is easy to show that only for j ¼ 2 one gets a one-
layer modified period map with a two-point Fourier
spectrum and for which relations (4.16) are satisfied:

Mðj¼2Þ
1 ðzÞ ¼ 4

cos z sin z

� sin z cos z

� �
;

�
 get a2 ¼ m̃2
2=n2 ¼ q=n2 ¼ 1:5=0:5 ¼ 3 and from Mðj¼2Þ

1 ðzÞ

realize that m1 ¼ 1;

�
 finally, obtain a1 either from m1 þ q ¼ m̃2 or from a1 þ

a2 ¼ limz!0M12
ðzÞ ¼ p (see Eq. (4.6)) and find a1 ¼ 1.

Alternatively one gets a1 straight from m1 using the
known n1 value.

4.1.2. General case

The inversion procedure used for the two-layer photo-
nic crystal in Section 4.1.1 can easily be generalized to a
photonic crystal made of m layers. In fact, we present the
following algorithm.
1.
 Consider the 2m-element Fourier spectrum corre-
sponding to the modified period map MmðzÞ,

Xm

j¼1

sjmj : sj ¼ �1

8<:
9=; ¼ fm̃1; m̃2; . . . ; m̃2m g,

where mj ¼ njaj, and find its maximum

m̃i ¼ m1 þ m2 þ � � � þ mm,

where i 2 f1;2; . . . ;2m
g.
2.
 Evaluate n1 and nm from Eq. (4.11):

c11
þ;...;þ

c12
þ;...;þ

¼
c21
þ;...þ

c22
þ;...þ

¼ n1;
c21
þ;...;þ

c11
þ;...;þ

¼
c22
þ;...;þ

c12
þ;...;þ

¼ nm. (4.17)
3.
 Consider the following system:

m1 þ . . .þ mm�1 þ mm ¼ m̃i;

m1 þ . . .þ mm�1 � mm ¼ m̃j

(
for any j 2 f1;2; . . . i� 1; iþ 1; . . . ;2m

g so that

mðjÞm ¼
m̃i � m̃j

2
; jai. (4.18)
4.
 For any computed mðjÞm , calculate the reduced modified
period map MðjÞm�1ðzÞ:

MðjÞm�1ðzÞ ¼
cosðmðjÞm zÞ �

sinðmðjÞm zÞ

nm

nm sinðmðjÞm zÞ cosðmðjÞm zÞ

0B@
1CAMðzÞ. (4.19)
5.
 Select the reduced period map whose corresponding
spectrum has 2m�1 elements and whose coefficient
matrix satisfies the following conditions:

c11
m�1

c12
m�1

¼
c21

m�1

c22
m�1

¼ n1;
c21

m�1

c11
m�1

¼
c22

m�1

c12
m�1

. (4.20)
6.
 This modified period map turns out to be unique and
consequently

am ¼
qm

nm
,

where qm is the frequency mðjÞm corresponding to the
unique MðjÞm�1ðzÞ computed at step 5.
7.
 Repeat the same procedure for Mm�1ðzÞ until the
original modified period map has been factorized
completely.

After step 3 one can reduce the number of mðjÞm by noticing
that

cð1;...;1;1Þ þ cð1;...;1;�1Þ ¼ Cm�1, (4.21a)

cð1;...;1;1Þ � cð1;...;1;�1Þ ¼
0

1

nm

nm 0

0@ 1ACm�1, (4.21b)

where Cm�1 is the leading coefficient matrix [i.e., cð1;...;1Þ] in
the modified period map MðjÞm�1ðzÞ for the first m� 1
intervals. Eqs. (4.21a) and (4.21b) thus reduce the number
of available mðjÞm so that step 4 is more easily performed.

5. Impurity period map and scattering matrix

Let us now consider a one-dimensional photonic
crystal, where the translational symmetry has been
broken by the introduction of a localized defect. Such a
crystal is depicted in Fig. 5, where the refractive index
profile along the x-direction is drawn. To treat it
mathematically, we consider the refractive index nðxÞ
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Fig. 5. Example of a periodic structure with period p having a localized impurity due to the presence of materials with different refractive index. The

impurity generates scattering phenomena (Jost functions). The refractive index profile along the x-direction is drawn.
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with a periodic component and a component
describing the effect of impurities. In this case Eq. (2.11)
generalizes to

c00ðZ; xÞ ¼ �ZnðxÞ2½1þ �ðxÞ�cðZ; xÞ, (5.1)

where nðxÞ is assumed to be a real piecewise continuous
periodic function of period p, �ðxÞ is piecewise continuous
and vanishes as x!�1 and �ðxÞ4� 1þ d for d40.

The scattering theory of the periodic-plus-impurity
Schrödinger equation relevant to the mathematical de-
scription of one-dimensional solid and semiconductor
crystals is well developed [25]. Apart from the asymptotic
theory for large jZj, the scattering theory for the periodic-
times-impurity Helmholtz equation (5.1) can be devel-
oped along the same lines. In this article we give a
summary of such a theory before applying it to the
recovery of the period map from the scattering data. Some
of the details are given in [24].

The scattering theory for the periodic-times-impurity
Helmholtz equation (5.1) is quite analogous to the
scattering theory of the Schrödinger equation on the line
[27], where the role of the Floquet solutions to be defined
by (5.2) is played by the plane waves eikx and e�ikx. The
analogy is all the more striking if we use the quasimo-
mentum k as a spectral parameter instead of Z, which has
the effect of converting the combined upper and lower
edges of the bands (in Z) into the real line (in k) and to
convert the complex Z-plane outside the bands into the
so-called physical upper half complex k-plane. This
analogy has led Firsova [25] to develop a scattering theory
for the periodic-plus-impurity Schrödinger equation.

5.1. Floquet and Jost functions

Asymptotically Eq. (5.1) admits two linearly indepen-
dent solutions which play the physical role of plane waves
[21–23]. For each non-real Z these so-called Floquet

solutions have the following form:

c1ðZ; xÞ ¼ yðZ; xÞ þm1ðZÞjðZ; xÞ, (5.2a)

c2ðZ; xÞ ¼ yðZ; xÞ þm2ðZÞjðZ; xÞ, (5.2b)
where m1;2ðZÞ are called Weyl coefficients and yðZ; xÞ
and jðZ; xÞ are the elementary solutions of (2.11)
satisfying (3.1). The Weyl coefficients can be calculated
by considering the Born–Von Kármán conditions,
implying that

t1;2ðZÞ � yðZ; pÞ �jðZ; pÞ
�y0ðZ;pÞ t1;2ðZÞ �j0ðZ; pÞ

 !
1

m1;2ðZÞ

 !
¼

0

0

� �
.

(5.3)

Hence

m1;2ðZÞ ¼
t1;2ðZÞ � yðZ; pÞ

jðZ; pÞ , (5.4)

where t1;2 are the roots of Eq. (3.3) for Z 2 CnR. These
Floquet solutions have the Bloch representation

c1;2ðk; xÞ ¼ e�ikyw1;2ðk; xÞ, (5.5)

where y is the travel time parameter, k is the quasimo-
mentum related to Z 2 CnR through Formula (3.11) and
w1;2ðk; xþ pÞ � w1;2ðk; xÞ are periodic. We also get for the
Wronskian

wðkÞ ¼
def

W½c1ðk; �Þ;c2ðk; �Þ�

¼W½yðZ; �Þ þm1ðZÞjðZ; �Þ; yðk; �Þ þm2ðZÞjðk; �Þ�
¼ fm2ðZÞ �m1ðZÞgW½yðZ; �Þ;jðZ; �Þ�
¼ m2ðZÞ �m1ðZÞ.

Following [25], let us now define the Jost functions as
those solutions to Eq. (5.1) that satisfy the asymptotic
relations (Fig. 5)

f 1ðk; xÞ ¼ c1ðk; xÞ½1þ oð1Þ�; x!þ1, (5.6a)

f 2ðk; xÞ ¼ c2ðk; xÞ½1þ oð1Þ�; x!�1. (5.6b)

Then the Jost solutions satisfy the asymptotic relations

f 1ðk; xÞ ¼ a1ðkÞc1ðk; xÞ þ b1ðkÞc2ðk; xÞ þ oð1Þ; x!�1,

(5.7a)
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f 2ðk; xÞ ¼ b2ðkÞc1ðk; xÞ þ a2ðkÞc2ðk; xÞ þ oð1Þ; x!þ1.

(5.7b)

where [cf. Eqs. (A.3)]

a1ðkÞ ¼ 1�wðkÞ�1I21ðkÞ; b1ðkÞ ¼ wðkÞ�1I11ðkÞ,

b2ðkÞ ¼ wðkÞ�1I22ðkÞ; a2ðkÞ ¼ 1�wðkÞ�1I12ðkÞ

and

IjkðkÞ ¼

Z 1
�1

½ZnðtÞ2�ðtÞ�cjðk; tÞf lðk; tÞdt; j; l ¼ 1;2.

Considering Eqs. (5.6) and (5.7) we observe that f 1ðk; xÞ is
bounded as x!�1 if and only if a1ðkÞ ¼ 0. In the same
way f 2ðk; xÞ is bounded as x!þ1 if and only if a2ðkÞ ¼ 0.
Thus, the Jost solutions are bounded for the k-values that
are zeros of the functions a1ðkÞ and a2ðkÞ. As in the case of
the periodic-plus-impurity Schrödinger equation [25],
these k values correspond to the discrete eigenvalues
Z inserted into the band gaps by impurities. Usually a1ðkÞ,
a2ðkÞ, b1ðkÞ and b2ðkÞ are referred to as scattering
parameters and they satisfy the useful symmetry
relations [24]:

a1ðkÞ ¼ a2ðkÞ ¼
def

aðkÞ; k 2 C, (5.8a)

b1ðkÞ ¼ �b2ð�kÞ ¼
def

bðkÞ; k 2 R, (5.8b)

bð�kÞ ¼ bðkÞ; k 2 R, (5.8c)

jaðkÞj2 � jbðkÞj2 ¼ 1; k 2 R. (5.8d)

5.2. Scattering matrix

Following [25], let us consider coefficients dijðkÞ ði; j ¼

1;2Þ such that

f 1ð�k; xÞ ¼ d11ðkÞf 1ðk; xÞ þ d12ðkÞf 2ðk; xÞ, (5.9a)

f 2ð�k; xÞ ¼ d21ðkÞf 1ðk; xÞ þ d22ðkÞf 2ðk; xÞ. (5.9b)

Using the asymptotic expressions (5.6) as x!�1, we get

c1ð�k; xÞ ¼ d11ðkÞc1ðk; xÞ þ d12ðkÞ½�bð�kÞc1ðk; xÞ þ aðkÞc2ðk; xÞ�,

að�kÞc1ð�k; xÞ þ bð�kÞc2ð�k; xÞ

¼ d11ðkÞ½aðkÞc1ðk; xÞ þ bðkÞc2ðk; xÞ� þ d12ðkÞc2ðk; xÞ,

� bðkÞc1ð�k; xÞ þ að�kÞc2ð�k; xÞ

¼ d21ðkÞc1ðk; xÞ þ d22ðkÞ½�bð�kÞc1ðk; xÞ þ aðkÞc2ðk; xÞ�,

c2ð�k; xÞ ¼ d21ðkÞ½aðkÞc1ðk; xÞ þ bðkÞc2ðk; xÞ� þ d22ðkÞc2ðk; xÞ.
Using c1;2ð�k; xÞ ¼ c2;1ðk; xÞ and the linear independence
of the Floquet solutions to equate coefficients of c1ðk; xÞ

and c2ðk; xÞ we get

0 ¼ d11ðkÞ � d12ðkÞbð�kÞ; 1 ¼ d12ðkÞaðkÞ,

bð�kÞ ¼ d11ðkÞaðkÞ; að�kÞ ¼ d11ðkÞbðkÞ þ d12ðkÞ,

að�kÞ ¼ d21ðkÞ � d22ðkÞbð�kÞ; �bðkÞ ¼ d22ðkÞaðkÞ,

1 ¼ d21ðkÞaðkÞ; 0 ¼ d21ðkÞbðkÞ þ d22ðkÞ.

Therefore,

d11ðkÞ d12ðkÞ

d21ðkÞ d22ðkÞ

 !
¼

1

aðkÞ

bð�kÞ 1

1 �bðkÞ

 !
; k 2 R.

We now define the transmission coefficient TðkÞ, the
reflection coefficient from the right RðkÞ, and the reflection

coefficient from the left LðkÞ by

TðkÞ ¼ d12ðkÞ ¼ d21ðkÞ ¼
1

aðkÞ
, (5.10a)

RðkÞ ¼ �d11ðkÞ ¼ �
bð�kÞ

aðkÞ
, (5.10b)

LðkÞ ¼ �d22ðkÞ ¼
bðkÞ

aðkÞ
, (5.10c)

where k 2 R. Then (5.8d) implies that the scattering

matrix

SðkÞ ¼
TðkÞ RðkÞ

LðkÞ TðkÞ

 !
; k 2 R, (5.11)

is unitary. Using formulas (5.8a), (5.8c), (5.8d) and (5.10),
it is easily shown that

jTðkÞj2 þ jRðkÞj2 ¼ jTðkÞj2 þ jLðkÞj2 ¼ 1

which corresponds to conservation of energy.
5.3. Recovering period map from scattering matrix

In this section we recover the relationship between the
period map and the scattering coefficients aðkÞ and bðkÞ.

Let the impurity be concentrated in the period ð0; p�
and let us refer to the rest of the crystal by the term bulk.
Assuming the period ð0; p� and the bulk to be piecewise
constant, we define

nðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ �ðxÞ�

p
¼

enj;
ebj�1ox 	 ebj; j ¼ 1; . . . ; l;

nðxÞ; xe½0; p�;

(

where 0 ¼ eb0oeb1o � � �oebl ¼ p and nðxÞ is as in Section 4.
Now let us define Mimp

ðZÞ as the matrix MðZÞ of Section
4, but with nj replaced by enj ðj ¼ 1; . . . ; lÞ. Then outside the
interval ½0;p� the Jost solutions can be expressed in terms
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Fig. 6. In this figure the function DðZÞ is drawn in blue, whereas aðZÞwðZÞjðZ;pÞ is in green. The system considered is a two-layer photonic crystal with

n1 ¼ 1, n2 ¼ 2, a1 ¼ 2, a2 ¼ 2 and DðZÞ has been computed using Eq. (4.5). The impurity is thought concentrated in one period of length p ¼ 4 whose

optical properties are parameterized by nimp
1 ¼ 2;nimp

2 ¼ 1; aimp
1 ¼ 3 and aimp

2 ¼ 0:9, while aðZÞwðZÞjðZ; pÞ has been calculated by making use of Eq. (5.15).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the Floquet solutions as follows (see Eqs. (5.7) and
(5.10)):

f 1ðk; xÞ ¼
c1ðk; xÞ; x 
 p;

aðkÞc1ðk; xÞ þ bðkÞc2ðk; xÞ; x 	 0;

(

f 2ðk; xÞ ¼
�bðkÞc1ðk; xÞ þ aðkÞc2ðk; xÞ; x 
 p;

c2ðk; xÞ; x 	 0:

8<:
Putting

Wðk; xÞ ¼
def c1ðk; xÞ c2ðk; xÞ

c01ðk; xÞ c02ðk; xÞ

 !
, (5.12)

we obtain

Wðk;0Þ
aðkÞ

bðkÞ

 !
¼

f 1ðk;0Þ

f 01ðk;0Þ

 !
¼ Mimp

ðZÞ�1
f 1ðk; pÞ

f 01ðk; pÞ

 !

¼ Mimp
ðZÞ�1

c1ðk; pÞ

c01ðk; pÞ

 !

¼ Mimp
ðZÞ�1MðZÞ

c1ðk;0Þ

c01ðk;0Þ

 !

and

Wðk;0Þ
�bðkÞ

aðkÞ

0@ 1A ¼ MðZÞ�1Wðk;pÞ
�bðkÞ

aðkÞ

0@ 1A
¼ MðZÞ�1

f 2ðk; pÞ

f 02ðk; pÞ

 !

¼ MðZÞ�1Mimp
ðZÞ

f 2ðk;0Þ

f 02ðk;0Þ

 !

¼ MðZÞ�1Mimp
ðZÞ

c2ðk;0Þ

c02ðk;0Þ

 !
.

As a result of wðkÞ ¼ m2ðZÞ �m1ðZÞ, c1ðk;0Þ ¼ c2ðk;0Þ ¼ 1,
c01ðk;0Þ ¼ m1ðZÞ, and c02ðk;0Þ ¼ m2ðZÞ we get

aðkÞ

bðkÞ

 !
¼

1

wðkÞ

m2ðZÞ �1

�m1ðZÞ 1

 !
Mimp
ðZÞ�1MðZÞ

1

m1ðZÞ

 !
,

(5.13a)

�bðkÞ

aðkÞ

 !
¼

1

wðkÞ

m2ðZÞ �1

�m1ðZÞ 1

 !
Mimp
ðZÞMðZÞ�1

1

m2ðZÞ

 !
.

(5.13b)

Eqs. (5.13)allow us to compute the period map Mimp
ðZÞ of

the periodic plus impurity problem if the impurity is
concentrated in one period. The latter scattering data can
easily be computed from one reflection coefficient and the
transmission coefficient by using (5.8d) and (5.10). Let us
now write NðZÞ ¼ Mimp

ðZÞ�1MðZÞ. Then

aðZÞ ¼ 1

wðZÞ ½m2ðZÞ þm1ðZÞ�
1

2
½N11ðZÞ � N22ðZÞ� � N21ðZÞ

�
þm2ðZÞm1ðZÞN12ðZÞ

þ½m2ðZÞ �m1ðZÞ�
1

2
½N11ðZÞ þ N22ðZÞ�

�
. (5.14)

Now for DðZÞe½�2;2� we have

wðZÞ ¼ m2ðZÞ �m1ðZÞ ¼
t2ðZÞ � t1ðZÞ

jðZ; pÞ
,

m2ðZÞ þm1ðZÞ ¼
DðZÞ � 2yðZ; pÞ

jðZ; pÞ ¼
j0ðZ; pÞ � yðZ; pÞ

jðZ; pÞ ,
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m2ðZÞm1ðZÞ ¼
t2ðZÞt1ðZÞ � ½t2ðZÞ þ t1ðZÞ�yðZ; pÞ þ yðZ; pÞ2

jðZ; pÞ2

¼
1� ½yðZ; pÞ þj0ðZ; pÞ�yðZ; pÞ þ yðZ; pÞ2

jðZ; pÞ2

¼ �
y0ðZ; pÞ
jðZ; pÞ .

Consequently,

aðZÞwðZÞjðZ;pÞ
¼ 1

2½N11ðZÞ þ N22ðZÞ�wðZÞjðZ;pÞ � N21ðZÞjðZ; pÞ
þ 1

2½N11ðZÞ � N22ðZÞ�½j0ðZ; pÞ � yðZ; pÞ�
� N12ðZÞy0ðZ; pÞ. (5.15)

It can be shown [24] that wðZÞjðZ; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðZÞ2 � 4

q
and

therefore looking for the zeros of aðZÞ amounts to
searching for the roots of aðZÞwðZÞjðZ; pÞ, because
DðZÞe½�2;2�. Consequently, Eq. (5.15) presents a way to
find the discrete eigenvalues in a band gap of a one-
dimensional photonic crystal (Fig. 6).
6. Conclusions

In this paper the fundamental properties of one-
dimensional photonic crystals have been described from
the theoretical point of view. First, we derived from
Maxwell’s equations the eigenvalue problem to study
propagation of TEM modes, then we introduced the period
map and presented an analytical way to compute the
photonic crystal band structure. We analyzed a structure
consisting of a finite number of periodic layers with
constant refractive index (piecewise constant case), and
developed an algorithm to recover the index of refraction
when each period of the lattice consists of an arbitrary
number of different materials. Finally, we paid attention
to a crystal with a localized impurity and estimated
the resulting discrete eigenvalues in band gaps by
introducing the impurity period map in the piecewise
constant case and relating it to the scattering coefficients
aðkÞ and bðkÞ.

Although mono-dimensional photonic crystals are
useful to confine radiation and realize laser Fabry–Perot
cavities, bi- and tri-dimensional photonic crystals may be
employed to develop a wide range of high performance
optical devices. In this context, a profound mathematical
analysis is a key point. A one-dimensional analytical
approach is essential to have sufficient insight in order to
understand how to generalize to higher dimensions. For
example, it would be very useful to be able to extend the
Hill discriminant method to two and three-dimensional
cases, i.e., to get the crystal band structure by making the
trace of a generalized period map to be a bounded set. An
inversion procedure in the multi-dimensional case would
allow us to design photonic crystals with customized
forbidden frequency regions.
Appendix A. Some integral relations

In this appendix we state some integral relations
needed to derive (5.6). We assume that nðxÞ is a positive,
piecewise constant, and periodic function of period p. For
details we refer to [24].

The following result is easily derived by the method of
variation of parameters:

Let gðxÞ be a bounded measurable function. Then the
unique solutions of the inhomogeneous differential
equation

�c00ðZ; xÞ ¼ ZnðxÞ2cðZ; xÞ þ gðxÞ (A.1)

satisfying cðk; xÞ ¼ c1;2ðk; xÞ½1þ oð1Þ� as x!�1 are
given by

cðZ; xÞ ¼c1ðk; xÞ

þ

Z 1
x

c2ðk; xÞc1ðk; tÞ �c1ðk; xÞc2ðk; tÞ

wðkÞ
gðtÞdt, (A.2a)

;cðZ; xÞ ¼ c2ðk; xÞ

�

Z x

�1

c2ðk; xÞc1ðk; tÞ �c1ðk; xÞc2ðk; tÞ

wðkÞ
gðtÞdt, (A.2b)

respectively.

For g ¼ ½Zn2��f 1;2ðZ; �Þ we get

f 1ðk; xÞ ¼ c1ðk; xÞ þ

Z 1
x

Aðk; x; tÞ½ZnðtÞ2�ðtÞ�f 1ðk; tÞdt,

(A.3a)

f 2ðk; xÞ ¼ c2ðk; xÞ �

Z x

�1

Aðk; x; tÞ½ZnðtÞ2�ðtÞ�f 2ðk; tÞdt,

(A.3b)

where

Aðk; x; tÞ ¼
c2ðk; xÞc1ðk; tÞ � c1ðk; xÞc2ðk; tÞ

wðkÞ
. (A.4)
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