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In this article we present a method to determine the band spectrum, band gaps, and
discrete energy levels, of a one-dimensional photonic crystal with localized impurities.
For one-dimensional crystals with piecewise constant refractive indices we develop an
algorithm to recover the refractive index distribution from the period map. Finally, we
derive the relationship between the period map and the scattering matrix containing
the information on the localized modes.
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1. Introduction

Photonic crystals are nanostructures in which, as in a
semiconductor crystal, the periodic variation of its
physical properties, i.e. its electric permittivity or, equiva-
lently, its refractive index, leads to photonic bands of
frequencies at which light can travel and be scattered, and
photonic band gaps of frequencies at which light cannot
pass. This kind of crystal may be observed in nature in the
frustules of some unicellular algae (diatoms) [1] or on the
surface of butterfly wings [2]. The band structure is also
the reason of some unusual optical properties such as
diffractive reflection and refraction, supercollimation, and
the superprism effect [3].

Introducing a disorder in the periodic dielectric
structure by doping the crystal with an impurity or by
locally altering the crystal periodicity, does not affect the
band structure of the electromagnetic spectrum, but may
create localized modes within band gaps at which
stationary waves may occur [4,5].
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The main purpose of photonic crystal modeling is the
design of devices with prescribed spectral properties such
as allowed and forbidden frequency intervals, based on
the identification of the spatial refractive index variation
using constraints on the frequency spectrum. Nowadays it
is possible to design photonic crystal fibers [6,7] introdu-
cing impurities allowing us to confine light (resonant
cavities and laser Fabry-Perot cavities [8]) or to create
preferred pathways to guide it (waveguides) [9-11].

Standard optical fibers rely on light being guided by
the physical law known as total internal reflection (TIR) or
index guiding. In order to achieve TIR in these fibers, which
are formed from dielectrics or semiconductors, it is
necessary that the refractive index of the core exceeds
that of the surrounding media. In photonic crystal fibers
light is constrained to propagate along photonic band
gaps, while the core is a different medium with a smaller
refractive index. These fibers have properties important to
telecommunication that differ from those of standard
fibers: they allow bending by larger angles and light
dissipation is much more negligible.

Other important applications are multiplexing, de-
multiplexing and switching. Using negative refraction,
supercollimation and the superprism effect, an optical de-
multiplexer has been designed by a research group at the
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Georgia Institute of Technology [12], while the Kerr effect
permits one to design basic components of integrated
optics like optical transistors [13].

A fundamental problem in this field is the design of a
photonic crystal with specified properties; engineering
design is formally a type of mathematical Inverse
Problem: given the allowed frequencies and the photonic
path at each allowed frequency, what is the corresponding
refractive index as a function of the location in the
crystal? In the literature the Level Set Method [14,15] has
emerged as an excellent tool that can contribute to
algorithms for the optimization of boundaries and edges.
A successful design method for photonic crystals will have
a big impact in computer circuitry. The replacement of the
electric current with a photonic flow will enable us to
build future optical integrated circuits that are much
faster, use much less energy, and dissipate much less heat.

In this paper we deal with one-dimensional photonic
crystals where, except for impurity variations, the refrac-
tive index is periodic in the direction of propagation of the
light. In the purely periodic case there have traditionally
been two methods to compute the bands and band gaps,
namely the transfer matrix method [16,17] and the plane
wave expansion method [18,5]. In this article, as in
[19,20], we apply the spectral theory of Hill's equation
[21-23], modified to be applicable to Helmholtz’s equa-
tion with periodic boundary conditions, to compute the
bands and band gaps as those frequency intervals where
the so-called Hill discriminant is smaller or larger than 2
in absolute value, respectively. This Hill discriminant
appears as the trace of a real 2 x 2 matrix, the period
map, which relates the initial data of the solution of
Helmholtz’s equation at the right endpoint of a period to
those at a left endpoint. Contrary to [19,20], we do not
derive conditions for having empty band gaps. For one-
dimensional crystals composed of finitely many different
materials with constant refractive index, which is a
suitable model for describing heterojunctions such as
AlGa-AlAs or InAs-AlSb, we compute the Hill discrimi-
nant and hence the band spectrum in closed form.
Conversely, in this “piecewise constant” case we evaluate
the refractive index as a function of position from the
spectral data in two steps:

1. We develop a method to recover the refractive index of
such material as a function of position from the period
map for one period. This period may have the same
material composition as the periodic crystal or may
contain the impurities.

2. We describe a method to evaluate the period map from
the scattering matrix containing the information on
the localized modes.

This method allows us, in principle, to reconstruct a one-
dimensional crystal consisting of finitely many materials
with constant refractive index from the band spectrum
and the scattering matrix, provided the impurities, now
consisting of a modified arrangement of the material
layers, are confined to one period.

2. Physical and mathematical model

The propagation of light in a photonic crystal is
described by Maxwell’s equations. Let E(r,t) and H(r,t)
stand for the electric and magnetic fields, and D(r,t) and
B(r, t) for the displacement and magnetic induction fields,
as a function of position r and time t. Assume photonic
crystals to be linear, isotropic, magnetically homogeneous,
and lossless materials without free charges and current
densities, so that

D(r,t) = eoe(r)E(r,t), B(r,t) = pouH(r,t), (2.1)

where the electric permittivity &(r) is real-valued. Limiting
ourselves to harmonic modes,

H(r,t) = Hr)et, Er,t) = E(r)e, (2.2)
Maxwell’s equations become

V x H(r) = —iwepe(r)E(r), (2.3)
V x E(r) = iouyuH(r), (2.4)
V- (e(rEr) =0, (2.5)
V. (uH(r) =0, (2.6)
which can be decoupled as follows:

%V x [V x E(r)] = ne(r)E(r), (2.7)
V. [e(rE®[)] =0, (2.8)

1

V x {mv X H(r)} = nuH(r), (2.9)
V. [uH(r)] =0, (2.10)

where u is the constant magnetic permeability and
ndéf w?/c? serves as the spectral parameter. Let n(r) =
/&) denote the refractive index.

Focusing on a one-dimensional pure photonic crystal, if
we consider TEM modes, i.e., polarized light propagating
along the periodic direction and E and H parallel to the yz
plane (Fig. 1), it is straightforward to see that the electric
eigenvalue problem (2.7)-(2.8) turns into the Helmholtz

equation:

—y"(,%) = N> X1, X), (2.11)

where x ¢ R, the prime denotes differentiation with
respect to x, the refractive index n(x) is a periodic function
with period p>0, ie. n(x+p)=nx), and Y (y,x) is the
polarized component of the electric field.

3. Hill discriminant and period map

The spectral theory of Hill’s equation (i.e., the one-
dimensional Schrédinger equation with periodic boundary
conditions) is well developed [21-23] and can obviously
be applied to describe one-dimensional solids and
semiconductors without impurities. In this section we
give the theoretical background on the one-dimensional
Helmholtz equation with periodic boundary conditions
[i.e. Eq. (2.11)] to describe a one-dimensional photonic
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Fig. 1. In a one-dimensional pure photonic crystal the dielectric medium
is periodic only in one direction (x-axis). Polarized light propagates along
the x-axis, while the magnetic field H and the electric field E are directed
along the y- and z-axes, respectively, and depend only on the x-variable
(TEM modes).

crystal without impurities. For the proofs, which closely
mimic those for Hill's equation, we refer to [21-23].

There exist unique linearly independent solutions
0(n,x) and ¢(#n,x) of Eq. (2.11), called elementary solutions,
satisfying the initial conditions

0m,00=1, 0.0 =0, (3.1a)

¢®0,0)=0, @10 =1 (3.1b)

Now assume ¥(x)#0 is a solution of Eq. (2.11) satisfying
the t-periodic or Born-Von Karman conditions

Y(1.p) = T(n,0), (3.2a)

¥'(1.p) = T (n,0), (3.2b)
for some constant 07 € C. Let us write the general
solution (1, x) of Eq. (2.11) satisfying conditions (3.2) as a
linear combination of the elementary solutions 0(y, x) and
@1, x). Then the linear combination

10017, %) + C20(17,%)

satisfies the boundary conditions (3.2) if and only if the
linear system

t=00.p) —@0.p) \[(c1) <o>

~0m.p) t—@'m.p))\ca)  \O
has a non-trivial solution, i.e., if and only if the system
determinant

2 —[001,p) + @' (. p)]T + 1 (33)

vanishes. Note that the Wronskian w = 0¢’ — 0'¢ = 1.
The fundamental matrix of Eq. (2.11) evaluated at x = p
is referred to as the period map

det [ 001.D) @1, p)
Mm)‘(@/(n,p) w’(n,p)>‘ G4

and its trace

A@m) = 0(n,p) + @' (1, p), (3.5)

is the Hill discriminant. Making use of condition (3.3), we
have

2 — ATt +1=0, (3.6)

which implies that
T1T2 =1, T1+712=4®), (3.7)

being 71 and 1, the roots of Eq. (3.6). As a result, from (3.7)
we get

A =t+171, (3.8)

where 7 is a root of Eq. (3.6). Generalizing the Born-Von
Karman condition to m periods we get

Y, x + mp) = My, X), (3.9)

from which we can easily see that solutions =0
satisfying (3.2), are unbounded as x — +oo if |7|>1 and
as x — —oo if |7]<1. Therefore the boundedness of such
solutions  requires |t| = 1. We thus arrive at the Bloch
representation

Y(n,x) = XYy, x),

where y(x) = f(’]‘ n(X)dx is a travel time parameter, k(1) is
the quasi-momentum to be discussed shortly, and y(n,x)
is periodic in x with period p. Moreover, Hill's discriminant
becomes

Am) =71 + 17 = e 4 e7* = 2 cos(kg), (3.10)

where q = y(p) is the travel time in one period. Hence [22,
Chapter XXI, 21,23] there exist bounded solutions if and
only if A(n) € [-2,2]. Outside this range there is no
physical solution, because the corresponding waves would
have infinite energy.

In the sequel we shall write many quantities in
terms of the quasimomentum k which is given in terms
of # and the one-period travel time q by Firsova’s Formula
[25]

1 A
k() =aarcsm<§\/41(n)2 —4>. (3.11)

Formula (3.11) defines a conformal mapping from the
complex n-plane cut along the bands onto the upper half
complex k-plane, where the bands approached from above
correspond to the positive real k-line and the bands
approached from below to the negative real k-line. When
writing (2.11) in the travel time parameter, under condi-
tions of sufficient smoothness on the refractive index n(x)
one can write (2.11) as Hill’s equation in the new position
variable y, where the part of momentum is now played by
the quasimomentum. In particular, if nx)=1, we
have g=p and k(y) =i/=7%, which is the usual
momentum.

For the homogeneous medium where n(x) = n>0, we
have

07, x;n) = cos(n/mx), @1, x;n) = %«/«/ﬁﬁ")
so that
A(n;n) = 2 cos(ny/np). (3.12)
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Then the zeros {;}32, of 4(n;n) = 2 and {7];}2; of A(y;n) =
—2 are given by

(%)2 j even,
(45) semm
B [

Thus (the interiors of) the bands are

. 2 ri2
(). 1123

whereas the band gaps are empty.

4. Piecewise constant refractive index

The piecewise constant case perfectly fits the descrip-
tion of a one-dimensional photonic crystal, i.e. regular
arrays of different dielectric materials layered along one
spatial direction as displayed in Fig. 2. We then have
nx) = n; (bji_1<x<b;, j=1,...,m), where 0=
bo<bi<---<by=pandaj=b;—b;_; =1,...,m). Then
any solution v;(17,x) of (2.11) on (bj_y, by) satisfies

Wi, %) = ¢1j007,x — bi_1;1) + C20(11,x — bj_1;m),  (4.1a)

Wi(1.%) = —( /> C1j@(n. X — bj_1: 1) + 007X — bj_1: 1)),
(4.1b)
where j=1,...,m. The requirement that y(y,x) is con-

tinuously differentiable at the points by,...,bn,_1 leads to
the identities

Gyj C1j-1 )
<C2j> _Aj1(77)<c2j_l ) j=2,...,m,

Thus

Cim 1
<C > :Am1(17)Az(71)A1(77)<C )
om 21

On the other hand,

¥ (1,p) Cim
(Vo) =son( Er ).

Consequently,

Y(,p) ¥(,0)
<l//’(n,p)> - M"”(w’w,m)’

where the period map M(#) is defined by

M) = An(MAm-1(n) ... A2 (DAL (). (4.2)

Having ¢ = 0 and = ¢, respectively, and using (3.1) we
get

M) = <

0m.p)  ©M.p) > (43)

0'(n.p) @'(n.p)
Hence the Hill discriminant is given by
A(n) = TrM(m)] = 0(n,p) + ¢’ (1, p)- (44)

In various special cases the function 4(x) allows us to
evaluate the crystal’s band structure (Fig. 3). For m = 2 we
get

A =2 {Cos(ﬂzﬂzx/ﬁ) cos(nya; /1)

—% (Z—] +E> sin(nyay /1) sin(nya; /1) |. (4.5)
2 M

For m = 3 we get

A =2 [COS(T!303«/'7_) €oS(12a2./7) COS(N1a1/7)

11’11

~5 (— + Z—?) cos(n3asz /1) sin(npax /1) sin(nya; /1)

ny

1/n n . .
-3 (n—; + i) Sin(nsas./1) cos(nyay /1) sin(nya /1)

1 . .
-5 (Z—i + Z—i) Sin(nsas./1) sin(nya; /n) cos(niay/1n)|.

In general, the period map M(#) has the form
sin(n;a;/1)
cos(n;a; /1) —_—
M= 1 iy mvT |,

J=mm=1..1\ —n; /7 sin(n;a; /1) €os(n;a;./1m)

where
A 0, aj_1;nj_q) oM, a_1;M;_1)
-1 = —(Mi_ e, ai_ ;1) 0m,a;_1:njq) )
A
n(x)
+— >
p

X

Fig. 2. Example of a periodic structure with period p in the case of a piecewise constant refractive index. The figure illustrates a one-dimensional three

layer photonic crystal with different layer amplitudes.
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Fig. 3. Graph of 4(n) as a function of /7 for a three layer photonic crystal (m = 3), wheren; = 1.5,n; = 1,n3 = 2,a; = 1,a, = 2, and a3 = 0.8. On the right

the allowed bands are displayed in dark and white.

which implies

1 a
lim M(y) = ( ’)
n—0" j:m,n11_—[1 1\0 1

1 alw-’k---+am
= < > (4.6)

Therefore the crystal period p equals the non-diagonal
entry M'2(y) of the period map as 5 — 0*. Moreover, we
easily see that

1
0 i
<“gﬁ 1)M(n) Vi
0 1
Cos(njajﬁ/]‘) w

— H n; , (4.7)
—n;sin(n;a; /1)  €os(n;a;j./1)

where the right-hand side is called modified period map,
has determinant 1 and whose entries are almost periodic
polynomials in ,/7. The diagonal entries are real even
functions of /77 and the off-diagonal entries are real odd

functions of /7 vanishing at /77 = 0.
Let us write

,ujznjaj>0, z=7,

v z 0 Iy z1 0
a2 (5 ).

where M(z) is the modified period map. Let us write the
entries of Mi(z) in the following form:

(4.8a)

Mia@) =+ ¢, sin((iy + 02pty + -+ + Omfhy)2),
(4.8b)

(4.8d)

where we sum over all sign patterns (,,...,0n,) in the
2™ 1 element set {—1,+1}""!. Then the Fourier spectrum
of the entries of the modified period map M(z) is given by

m
Zajnjaj 10 = +1 5.

j=1

Therefore it has at most 2™ points and its maximum is
4 + -+ + Uy Using the addition formulas of trigonome-
try, we get the recurrence relations

1 1
11 _1mn 21
CUZ,---~0m713i1 ) CUzy--ﬂmq + 2Nm CO’z ,,,,, Om-1’
1 1
22 _ 1 1 12
Caz,...,om,l,il - 2 Caz,...,om,l + 2 nmc(rz ,,,,, OTm_1’
1 1
12 _ 1 22
CO‘Z,---me—lai1 ) CUZ,---wam—l + 2Nm CO’z »»»»» Om-1'
21 _ 1 5 1 4
C(rz,...,o'm,l,il - 2 C(rz,...,o'm,l + 2 nmc(rz ,,,,, OTm-1

We thus easily recover the expression

1 (1 1/nm 1 1m
:2_< 1)( 1), (49)
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where the subscript 1,...,1 have m — 1 entries and the
product matrix has positive entries but zero determinant.
More generally,

11 12
def Corom  Corpsom
C =
G2, Om o2 22
G

[ TN Om ZOm
1 1 Om 1T o2 1
= = Mm | .. n m|. (4.10)
2 Omlm 1 aany 1 n 1

By induction on the number of factors we thus easily
prove that

11 21

CO'z,---wﬂ'm _ CO’zy---,Gm =m

12 22 - ’

Caz,,.,,am Co’; ..... Om

21 22

C C

02,.0m __ ~02,..0m __

St _ sl g, (4.11)
02,....0m 02,.-,0m

4.1. Recovery of the refractive index

In this subsection we propose a method to determine
the refractive indices n; and the layer amplitudes a; from
the modified period map M(x) in the piecewise constant
case. This kind of heterostructure generally consists of no
more than three layers per period [9,26]. An example of
such a periodic structure is depicted in Fig. 2.

4.1.1. Two-layer photonic crystals

Let us consider a crystal where in each period there are
two different media with refractive indices n; and n,,
respectively, where n; #n, (Fig. 4).

e We start from the modified period map M,(z) and
focus on its Fourier spectrum. For a two-layer photonic
crystal its Fourier spectrum will be the 22 element set

{0y + 1), £y — o)} = (i, fly, fis, A}

e We then consider the maximum of the Fourier
spectrum:

B =may + My = [y + Uy, (4.12)
for some i< {1,2,3,4).

Fig. 4. Example of a heterostructure made of two semiconductor crystals
InAs-AlSb with different refractive indices.

e Let ¢, be the corresponding coefficient matrix. We
evaluate n; and n, from Eqgs. (4.11):

11 21 21 22
S oS on, =S o, (4.13)
c2 % cll b

e We consider the following system:

H + Hp =,
Hy— Hy = [

for any je(1,2,3,4} different from i, so that we
get

w0 :@ ji. (4.14)

e For any computed ,ug) (for a two-layer photonic crystal
there are three of them), we calculate the reduced
modified period map M(l’)(z) corresponding to the
virtual one-layer photonic crystal

~ sin(u¥z

M(j) COS(ﬂ(ZI)Z) ,M
1@ = ‘ ny M, (2). (4.15)

nysin(ud'z)  cos(uyz)

e We select the period map which has a corresponding
two-element Fourier spectrum (which is consistent
with the one-layer virtual photonic crystal) and whose
corresponding coefficient matrix satisfies the following
relations:

Cl] C21 C21 C22

Cl—zzcﬁ:n], CT:C.I—Z. (4.16)

Such a period map turns out to be unique
def " (j)
and consequently we find the correct q= 3,

which  corresponds to the uniquely found
M9 (2).

e We compute a, = q/n, and finally we get the value of
a; from Eq. (4.12).

Alternatively one can compute a, using the crystal period
knowledge (see Eq. (4.6)) and realizing that a; + a; = p.

Example 4.1. Consider

n=1 ny,=05 a=1, a =3.

Then p; =1, u, = 1.5 and using Eqs. (4.8a)-(4.8d) and
(4.10), it is straightforward to build the corresponding
modified period map:

Mi1(2) = +4[3 cos(2.52) — c0s(0.52)],
M12(2) = +4[3 5in(2.52) + sin(0.52)],
M1 (2) = —1[1.55in(2.52) — 0.5 sin(0.52)],
M22(2) = +4[1.5 cos(2.52) + 0.5 cos(0.52)].
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The coefficient matrices correspond to the Fourier spec-
trum as follows:

1/ 3 3 1 3 -3
+ 25— = , =25/ = ,
2\15 15 2\ -15 15

1/ -1 1 1 /-1 -1
+05— = , —05— = )
2\ -05 05 2\05 05

where (u; + o2/4,) — €5,. We now perform the inversion:

e find the Fourier spectrum: {0.5,-0.5,2.5, —2.5};
e focus on its maximum: fi, = 2.5;
e evaluate
ol @
Mm=m=a=l Mm=ar=ar=0>
+ + + +

e compute &, forj=1,2,4:
fp=1, =15 [5=25;

e we calculate M¥(z) for j = 1,2,4:
IMY]41(2) = 6 cos[(F, — 2.5)z] — 2 cos[(fL, — 0.5)z],
IMP]45(2) = —6 sin[(iE, — 2.5)z] — 2 sin[(j¥, — 0.5)z],
MY, (2) = 3 sin[(&F, — 2.5)z] — sin[(fZ, — 0.5)z],
IMY1,,(2) = 3 cos[(iE, — 2.5)z] + cos[(j¥, — 0.5)z],

and it is easy to show that only for j = 2 one gets a one-
layer modified period map with a two-point Fourier
spectrum and for which relations (4.16) are satisfied:

]
]
]
]

’

ng:z’(z)=4< cosz sinz)

—sinz cosz

e geta, = fi/ny = q/ny = 1.5/0.5 = 3 and from MY=2(z)
realize that y; = 1;

e finally, obtain a; either from p; + q = fi, or from a; +
a, = lim,_,oM'2(z) = p (see Eq. (4.6)) and find a; = 1.
Alternatively one gets a; straight from p; using the
known n; value.

4.1.2. General case

The inversion procedure used for the two-layer photo-
nic crystal in Section 4.1.1 can easily be generalized to a
photonic crystal made of m layers. In fact, we present the
following algorithm.

1. Consider the 2™-element Fourier spectrum corre-
sponding to the modified period map M, (2),

m
{ Ujﬂj:aj:il}:{ﬂlsﬂza---,ﬂzm}'
=

where u; = n;a;, and find its maximum

Hi=l + o+ Uy,
whereie {1,2,...,2™.

2. Evaluate n; and n,, from Eq. (4.11):

Al @l a2,
ot _ St oy G _Se _ g (4.17)
c? ol o2 "
3. Consider the following system:
Myt o+ My = s
Pyt My — My =
foranyje{1,2,...i—1,i+1,...,2™} so that
gg:@ j#i. (4.18)

4. For any computed ,u(,Q, calculate the reduced modified
period map M?_,(2):
sin(ufhz)

0]
MO @)= | O o |M@.  (4.19)

N sin(uiz)  cos(uihz)

5. Select the reduced period map whose corresponding
spectrum has 2™ ! elements and whose coefficient
matrix satisfies the following conditions:

C;nL] C21 C21

m—1 m—1 m—1
- =n = . (4.20)
12 22 > 11 12
Cm—l Cm—l Crn—l Cm—l

6. This modified period map turns out to be unique and
consequently

Am

am =—,
m nm

where q,, is the frequency ,u(,{;) corresponding to the
unique M(,Q_l(z) computed at step 5.

7. Repeat the same procedure for M,_1(z) until the
original modified period map has been factorized
completely.

After step 3 one can reduce the number of ,u(,Q by noticing
that

.1 +€a..1-1)=Cm_1, (4.21a)

1
0 —
C1..11) — €. 1-1) = Mm | Cm-1,
nm O

where Cp,_; is the leading coefficient matrix [i.e., €4, 1)] in
the modified period map Ml(r’;l)f](z) for the first m—1
intervals. Egs. (4.21a) and (4.21b) thus reduce the number
of available p¥) so that step 4 is more easily performed.

(4.21b)

5. Impurity period map and scattering matrix

Let us now consider a one-dimensional photonic
crystal, where the translational symmetry has been
broken by the introduction of a localized defect. Such a
crystal is depicted in Fig. 5, where the refractive index
profile along the x-direction is drawn. To treat it
mathematically, we consider the refractive index n(x)
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£ (kx) f,0%)
. +—
f (-k.x) impurity f (kx)
:
-« X

Fig. 5. Example of a periodic structure with period p having a localized impurity due to the presence of materials with different refractive index. The
impurity generates scattering phenomena (Jost functions). The refractive index profile along the x-direction is drawn.

with a periodic component and a component
describing the effect of impurities. In this case Eq. (2.11)
generalizes to

Y (1,%) = —nnx)’[1 + W1, %), (5.1)

where n(x) is assumed to be a real piecewise continuous
periodic function of period p, &(x) is piecewise continuous
and vanishes as x — 400 and &(x)> — 1+ 6 for 0>0.

The scattering theory of the periodic-plus-impurity
Schrédinger equation relevant to the mathematical de-
scription of one-dimensional solid and semiconductor
crystals is well developed [25]. Apart from the asymptotic
theory for large |5, the scattering theory for the periodic-
times-impurity Helmholtz equation (5.1) can be devel-
oped along the same lines. In this article we give a
summary of such a theory before applying it to the
recovery of the period map from the scattering data. Some
of the details are given in [24].

The scattering theory for the periodic-times-impurity
Helmholtz equation (5.1) is quite analogous to the
scattering theory of the Schrodinger equation on the line
[27], where the role of the Floquet solutions to be defined
by (5.2) is played by the plane waves e** and e~**, The
analogy is all the more striking if we use the quasimo-
mentum k as a spectral parameter instead of #, which has
the effect of converting the combined upper and lower
edges of the bands (in #) into the real line (in k) and to
convert the complex #-plane outside the bands into the
so-called physical upper half complex k-plane. This
analogy has led Firsova [25] to develop a scattering theory
for the periodic-plus-impurity Schrédinger equation.

5.1. Floquet and Jost functions

Asymptotically Eq. (5.1) admits two linearly indepen-
dent solutions which play the physical role of plane waves
[21-23]. For each non-real n these so-called Floquet
solutions have the following form:

Y1 (n,x) = 01, %) + M (@1, ), (5.2a)

Yo (1,%) = 0(n, X) + ma()@(1,X), (5.2b)

where mj () are called Weyl coefficients and 0(n,x)
and ¢(n,x) are the elementary solutions of (2.11)
satisfying (3.1). The Weyl coefficients can be calculated
by considering the Born-Von Karman conditions,
implying that

T1201) — 007, p) —@(1.p) 1 3 (0)
~0'(n.p) Ti20m) = @'(1.p) ) \ mi20) | — \0 )
(5.3)
Hence
T12(n) — 0. p)
— " 5.4
¢(1.p) G4)
where 77, are the roots of Eq. (3.3) for n € C\R. These
Floquet solutions have the Bloch representation
Yiak.x) = ey 5 (k,x), (5.5)

where y is the travel time parameter, k is the quasimo-
mentum related to 7 € C\R through Formula (3.11) and
%12k, X+ p) = y15(k, x) are periodic. We also get for the
Wronskian

my2() =

def

w(k) = W (k, ), ok, )]
= W0, ) + mi(me, ), 0k, ) + ma () p(k, -)]
= {ma(n) — myIW[O, ), (1, )]
= my(1) — my(1).

Following [25], let us now define the Jost functions as
those solutions to Eq. (5.1) that satisfy the asymptotic
relations (Fig. 5)

f1,x) =Yk, 0)[1 +0(1)], X — oo, (5.6a)

falk,x) = Yok, %)[1 4+ 0(1)], X — —o0. (5.6b)

Then the Jost solutions satisfy the asymptotic relations

f1k,x) = a1 (k) (k, x) + b1l (k,x) + 0(1), x — —oo,
(5.7a)
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fa(k,x) = ba (kW1 (k. x) + az ()W, (k,x) + 0o(1), x — +oo.
(5.7b)

where [cf. Egs. (A.3)]

a;(k) =1 —wk) 'Ly(k), bi(k) = wk)y ' I11(k),
by(k) = wk) ' Ina(k),  ax(k) =1 — w(k)~I12(k)

and

o = [ i@k ofi e, j.=1.2,

Considering Eqgs. (5.6) and (5.7) we observe that f; (k,x) is
bounded as x — —oc if and only if a;(k) = 0. In the same
way f,(k,x) is bounded as x — +oc if and only if a,(k) = 0.
Thus, the Jost solutions are bounded for the k-values that
are zeros of the functions a;(k) and a;(k). As in the case of
the periodic-plus-impurity Schrodinger equation [25],
these k values correspond to the discrete eigenvalues
1 inserted into the band gaps by impurities. Usually a; (k),
ax(k), bi(k) and by(k) are referred to as scattering
parameters and they satisfy the useful symmetry
relations [24]:

ar(k) = a(k) E ak), keC, (5.8a)
bi(k) = —by(—k) & b(k), ke R, (5.8b)
b(—k) =b(k), ke R, (5.8¢)
lak)> — bk)P> =1, kelR. (5.8d)

5.2. Scattering matrix

Following [25], let us consider coefficients d(k) (i,j =
1,2) such that

F1(=k, %) = di1(K)f 1 (k, %) + di2(R)f (k. %), (5.9a)

Fa(=k,x) = da1(J)f 1 (k, %) + daz (l)f 5 (k, X). (5.9b)

Using the asymptotic expressions (5.6) as x — +oo, we get

Y (=k,x) = dy (), (k, %) + di2(0[-b(—k)npr; (k, X) + a(knp, (k, X)),

a(—kwr(—k,x) + b(—kwr,(—k,x)
= di([atkon; (k,x) + b, (k, )] + di2 (k)5 (k, X),

— b(lor (—k, x) + a(—k)r,(—k, x)
= dy1 (k)1 (k, X) + daa(K)[—b(—k)ry (k, %) + ak)y, (k, x)],

Yo (—k, x) = dar(K)[ak)y(k,x) + bk, (k, x)] + daz (k)4 (k, X).

Using v 5(—k,X) = Y, ;(k,x) and the linear independence
of the Floquet solutions to equate coefficients of y/(k,x)
and v, (k,x) we get

0 =dy1(k) — di2(K)b(=k), 1 =d(ka(ck),

b(=k) = di1(kyak), a(—k) = di1(k)b(k) + dq2(k),
a(—k) = dy1 (k) — daa(k)b(=k), —b(k) = dxn(ka(k),
1 =dy;(k)ak), 0= dy1(k)b(k) + daa(K).

Therefore,
din(k) diz()\ 1 (b=k) 1 ke R
dy(k) dxn(k) ) ~ atk) 1 by |0 €™

We now define the transmission coefficient T(k), the
reflection coefficient from the right R(k), and the reflection
coefficient from the left L(k) by

T(k) = dia(k) = da1 (k) = %k) (5.10a)

R(k) = —d11(k) = - b((l(_k';). (5.10b)
I

Ltk) = —da(k) = % (5.100)

where k< R. Then (5.8d) implies that the scattering
matrix

sty = (T0 RRA g 5.11)
W=\ rky Ty | *e® .

is unitary. Using formulas (5.8a), (5.8¢), (5.8d) and (5.10),
it is easily shown that

IT(k)1? + [R(K)1* = [T(k) + L(k))? = 1

which corresponds to conservation of energy.

5.3. Recovering period map from scattering matrix

In this section we recover the relationship between the
period map and the scattering coefficients a(k) and b(k).

Let the impurity be concentrated in the period (0, p]
and let us refer to the rest of the crystal by the term bulk.
Assuming the period (0, p] and the bulk to be piecewise
constant, we define

n(x) [1+8(x)]:{”f’ b 1<x<b,j=1,....1

nx), x¢[0,p],

where 0 = bg<b; < --- <5, = p and n(x) is as in Section 4.

Now let us define M™ () as the matrix M(1) of Section
4, but with n; replaced by n; j = 1,..., ). Then outside the
interval [0, p] the Jost solutions can be expressed in terms
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10

a(n)w(n)e(n, p)
=
/

3
)

A(n),

-10

6 8 10 12
n

Fig. 6. In this figure the function 4(y) is drawn in blue, whereas a(n)w(n)@(n, p) is in green. The system considered is a two-layer photonic crystal with
ny=1,ny=2,a; =2, a, =2 and 4(y) has been computed using Eq. (4.5). The impurity is thought concentrated in one period of length p = 4 whose

. . . imp
optical properties are parameterized by nj

=2, = 1,d™ = 3 and d" = 0.9, while a(n)w(7)@(, p) has been calculated by making use of Eq. (5.15).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the Floquet solutions as follows (see Egs. (5.7) and
(5.10)):

(k. x), X=p,
Jrtk.x) = { atowy, (k, x) + bk, (k,x), x <0,

—b(owr, (k) + (ks (k, %), x = p,

k,x) =
fatkex) { Wy (k, x), x<0.

Putting

@(%mm %mm>

W= yitx) whkx) (5.12)

we obtain
Wk 0) aky\  (f1(k.0) _ Mgy f1lk.p)
b ) ~\fk0y) =P\ fikep)

. Mimp( )—1 l//I(k’p)
=PI ik

im 1 l//‘l(k70)
=M"P ()" M()

¥ (k.0)

and

Yy _b(k)
W(k,0) bk =M@ 'W(k,p) M
a(k) a(k)
1 f2(k’ p)
= M(n)

fa(k,p)
fa(k,0)
ﬁmm)
Wk, 0)
%mm)

=M@‘MW@<

=MW‘MWW<

As a result of w(k) = my () — my(n), Y1(k,0) =, (k,0) =1,
Y (k,0) = mq(), and Y, (k, 0) = my(17) we get

ak)\ 1 [ maOp 1N\ 1
(b(k)>_w(k)<—m1(7’]) 1 >M ) Mw)(m(f?))'

(5.13a)

_% _ L ma () -1 imp -1 1
(mm>_W®<4m@ 1 JMEEOMED T iy )

(5.13b)

Egs. (5.13)allow us to compute the period map M™ (1) of
the periodic plus impurity problem if the impurity is
concentrated in one period. The latter scattering data can
easily be computed from one reflection coefficient and the
transmission coefficient by using (5.8d) and (5.10). Let us
now write N(17) = M™(;7)~"M(1). Then

) = s { 20D+ MO N1 = Naa] = N

+ my(i)my (1)N12(1)

1
+[ma(1) — ml(’])]i[Nll(n)+N22(77)]}- (5.14)

Now for A(n)¢[—2,2] we have

T2(n) — T1(1)

w(n) = ma(n) —my(n) = 00D

)

A() —2001,p) _ ¢'(1,p) — 001, p)
¢®.p) ¢®.p)

my(n) +m(n) =



224 C. van der Mee et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 214-225

T2t () — [T2() + T1 D107, P) + 0(1, p)>

my(mmq(n) = 2
®(1.p)
_ 1-1001.p) + ¢'(n. 01, p) + 001, p)*
@1, p)*
_ _0m.p
@(.p)’
Consequently,

amwm e, p)
= 3IN11(7) + Naz2 (W@, p) — Na1 (117, p)
+ 3N11(n) — Noo (DI’ (11, p) — 01, p)]
— Ni2(ip0' (1, p). (5.15)

It can be shown [24] that w()@(n.p) = 1/ A(7)* — 4 and
therefore looking for the zeros of a(y) amounts to

searching for the roots of a(n)w(n)p(n,p), because
A(n)¢[—2,2]. Consequently, Eq. (5.15) presents a way to
find the discrete eigenvalues in a band gap of a one-
dimensional photonic crystal (Fig. 6).

6. Conclusions

In this paper the fundamental properties of one-
dimensional photonic crystals have been described from
the theoretical point of view. First, we derived from
Maxwell’'s equations the eigenvalue problem to study
propagation of TEM modes, then we introduced the period
map and presented an analytical way to compute the
photonic crystal band structure. We analyzed a structure
consisting of a finite number of periodic layers with
constant refractive index (piecewise constant case), and
developed an algorithm to recover the index of refraction
when each period of the lattice consists of an arbitrary
number of different materials. Finally, we paid attention
to a crystal with a localized impurity and estimated
the resulting discrete eigenvalues in band gaps by
introducing the impurity period map in the piecewise
constant case and relating it to the scattering coefficients
a(k) and b(k).

Although mono-dimensional photonic crystals are
useful to confine radiation and realize laser Fabry-Perot
cavities, bi- and tri-dimensional photonic crystals may be
employed to develop a wide range of high performance
optical devices. In this context, a profound mathematical
analysis is a key point. A one-dimensional analytical
approach is essential to have sufficient insight in order to
understand how to generalize to higher dimensions. For
example, it would be very useful to be able to extend the
Hill discriminant method to two and three-dimensional
cases, i.e., to get the crystal band structure by making the
trace of a generalized period map to be a bounded set. An
inversion procedure in the multi-dimensional case would
allow us to design photonic crystals with customized
forbidden frequency regions.

Appendix A. Some integral relations

In this appendix we state some integral relations
needed to derive (5.6). We assume that n(x) is a positive,
piecewise constant, and periodic function of period p. For
details we refer to [24].

The following result is easily derived by the method of
variation of parameters:

Let g(x) be a bounded measurable function. Then the
unique solutions of the inhomogeneous differential
equation

—" (1, %) = MY, %) + gX) (A1)
satisfying y(k,x) = 1 ,(k,x)[1 +0(1)] as x — oo are
given by

(1,x) =y (k,X)

Yok, X)W (k, £) — Y (k, X)W, (k, 1)
+ wik) gdt,  (A.2a)

W01 %) = Yok, %)
T kX (k. £) — (KX)o (k, £)

o w(k)

gtydt, (A.2b)
respectively.
For g = [qn?elf1,(n, ) we get

Frlkx) = vy (k) + / Alk:x, Ot 2eOIf k. By de,

(A.3a)
Fatko0 =)~ [ Alx, lm(OPs(O (k. 0 dt,
(A.3b)
where
. _ lpZ(k’ X)lp'l (ka t) — lp] (k’ X)lpZ(ks t)
Ak; x,t) = wik) . (A4)
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