An Integrated-Photonics
Optical-Frequency Synthesizer

Daryl Spencer

National Institute of Standards and Technology, Boulder, CO USA

Travis Briles, Tara Drake, Jordan Stone, Qing Li, Laura Sinclair, Daron Westly, Robert Illic, Nate Newberry, Kartik Srinivasan, Scott Diddams, Scott Papp

Nick Volet, Aaron Bluestone, Tin Komljenovic, Luke Theogarajan, John Bowers

Seung Hoon Lee, Dong Yoon Oh, Myoung-Gyun Suh, Ki Youl Yang, Kerry Vahala

Martin Pfeiffer, Tobias Kippenberg

Erik Norberg, Greg Fish

Funding via DARPA DODOS project
Optical Frequency Synthesis

- Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: \(10^{-13} = \frac{\Delta f}{f_{\text{carrier}}} = \frac{1 \mu Hz}{10 MHz} = \frac{20 Hz}{200 THz} \)
Optical Frequency Synthesis

• Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: \(10^{-13} = \frac{\Delta f}{f_{\text{carrier}}} = \frac{1\mu\text{Hz}}{10\text{MHz}} = \frac{20\text{Hz}}{200\text{THz}}\)
 - Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery

\[
\begin{align*}
\Delta f &= \frac{1\mu\text{Hz}}{10\text{MHz}} = \frac{20\text{Hz}}{200\text{THz}} \\
200\text{THz} &= 2 \times 10^{13}\text{Hz} \\
10\text{MHz} &= 10^7\text{Hz} \\
1\mu\text{Hz} &= 1 \times 10^{-6}\text{Hz}
\end{align*}
\]

- Frequency comb
- \(f_{\text{rep}}\) self reference!

Accurate Spectroscopy
- Laser output
- Detector
- Environmental
- Chemical/biological hazardous materials
Optical Frequency Synthesis

• Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 • Example at 1 sec: \(10^{-13} = \frac{\Delta f}{f_{\text{carrier}}} = \frac{1 \mu Hz}{10 \text{MHz}} = \frac{20 \text{Hz}}{200 \text{THz}} \)
 • Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery

• Octave spanning combs allow precise definition of each comb line, and transfer of stability between optical and microwave domain
 • \(f_n = n * f_{\text{rep}} + f_o \)

• Systems have scaled down from multiple labs to benchtop systems

NIST ~1983

Frequency Chain Laboratory (100 m²)

NIST ~2000

Laser Freq. Comb Table Top (1 m²)
Optical Frequency Synthesis

• Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 • Example at 1 sec: \(10^{-13} = \frac{\Delta f}{f_{\text{carrier}}} = \frac{1\mu\text{Hz}}{10\text{MHz}} = \frac{20\text{Hz}}{200\text{THz}}\)
 • Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery
• Octave spanning combs allow precise definition of each comb line, and transfer of stability between optical and microwave domain
 • \(f_n = n*f_{\text{rep}} + f_o\)
• Systems have scaled down from multiple labs to benchtop systems
• We aim to push SWAP+C down with integrated photonics, based on emerging microcomb technology
 • Octave spanning Si\textsubscript{3}N\textsubscript{4} THz comb
 • High Q silica comb to detect \(f_{\text{rep}}\)
 • High confinement waveguide PPLN
 • Heterogeneously integrated lasers

\[\begin{align*}
\text{~1 cm}^2 \\
\text{~10}^4 \text{ size reduction}
\end{align*} \]
• **Approach:** Dual reduction gear
 - 200 THz → 1 THz → 15 GHz + agile tunable laser

• **Leverage:** Photonic integration (pump laser, PPLN, photodiodes)
 - Low power, improved frequency control, and enhanced nonlinearities

\[f_n = n \cdot f_{\text{rep}} + f_0 \]
Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

- Si_3N_4 resonators from NIST-Gaithersburg
- Octave bandwidth with dual dispersive waves from dispersion engineering
Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

- Caltech wedge resonators
- Ultrahigh (>100M) Q
- Recently waveguide integrated
Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

- Tunable lasers from Aurrion, Inc. (now Juniper)
- Integrated on the heterogeneous III/V-Si platform
Dual Kerr Microcombs

- Solitons initiated by tunable laser scan across resonance
- Need to end scan on red detuning, without appreciable resonator heating
- Fastest sweeps using IQ modulator in single sideband operation

Experiment sequence

Laser frequency

Total comb power

Power Drop & “steps”

Hold

Scan back

Scan in

1 soliton

2 soliton

This work: Stable solitons

Noisy combs

\[F^2, \text{Pump power} \]

\[\alpha, \text{Pump detuning} \]
Self-referencing Microcombs

- f_{rep} of 22 GHz silica comb is phase locked by direct microwave detection
- Beat note between 1 THz and 22 GHz combs produce error signal to phase lock – THz f_{rep} stable
Self-referencing Microcombs

• 1998nm laser allows for strong second harmonic generation (SHG) and high SNR beat notes against THz comb lines.

• f_0 phase locked

Heterodyne beat @ 1998 nm

Approximately 30 dB SNR in 1 MHz

SHG heterodyne beat @ 999 nm

Approximately 30 dB SNR in 1 MHz

$f_0/64$ by processing both signals
Heterogeneously Integrated Tunable Lasers

- Vernier tunable lasers on the heterogenous Si platform
 - III/V quantum wells wafer bonded on SOI
 - On chip SOA to compensate facet loss
- Packaged and isolated from air currents in the lab

Example: O band laser tuning map
This work: C band tunable laser
Phase Locking Lasers to Resonators

- Comb stability is successfully transferred to tunable lasers with <1 Hz residual stability at 1s.
- Vernier laser tuning to reach arbitrary comb line between 1530 – 1570 nm.
- FPGA implementation of phase frequency detector and PI2D feedback.
Absolute Tunable Laser Synthesis

- Compare stabilized tunable laser to isolated benchtop self-referenced comb
 - Referenced to same maser RF signal → residual stability (accuracy of reproducing RF signal onto laser)
Absolute Tunable Laser Synthesis

- 320 Hz laser jump with 19 Hz uncertainty

320 Hz shift applied
337 Hz measured. Uncertainty is 19 Hz.
Absolute Tunable Laser Synthesis

- In loop locking: $\approx 10^{-15}/\tau$
- Dual microcomb locks: $<10^{-11}/\tau$
- Tunable laser synthesis: $<10^{-11}/\tau$
Conclusions

• First demonstration of fully stabilized octave spanning microcomb with direct self-referencing
 • Leveraged by accurate fab and dispersion engineering of Si$_3$N$_4$ THz comb
 • Phase locked to microwave signals with $< 10^{-11}/\tau$

• First demonstration of optical frequency synthesis utilizing dual microcombs
 • Ultrahigh Q silica resonator allows real time detection/stabilization of f_{rep} for both combs
 • <20 Hz error in knowing the laser’s precise optical frequency
 • Laser reproduces microwave stability with $< 10^{-11}/\tau$

NIST-Boulder microcomb team

daryl.spencer@nist.gov