SECTION II:
UCSB POLICIES, PROCEDURES AND RESOURCES

Introduction: UCSB Policies, Procedures and Resources 2

Emergency Preparedness and Response
 Emergency Response Procedures 3
 Recommended Chemical Spill Cleanup Procedures 4
 Fire Extinguishers, First-Aid Kits and Emergency Shower/Eyewashes 5

Personal Protective Equipment
 Campus Policy on Laboratory Personal Protective Equipment (PPE) 6
 Laboratory PPE Use Poster 7
 Personal Protective Equipment in UCSB Storerooms 8
 Selecting the Proper Gloves 9

Chemical Safety
 Exposure Limits for Chemicals 10
 Material Safety Data Sheets (MSDS) 12
 Fume Hood Usage Guide: Standard Hoods 13
 Fume Hood Usage Guide: Variable Air Volume Hoods 14
 Safe Storage of Chemicals 15
 Refrigerators in Labs 17

Laboratory Safety Training
 Campus Policy on Laboratory Safety Training 18
 Non-UCSB Online Laboratory Safety Training 19

Laboratory Inspection Program
 Laboratory Self-Inspection Checklist 20

Waste Disposal
 Chemical Waste Disposal 27
 Disposal of Sharps 28
Introduction to Section II: UCSB Policies, Procedures and Resources:

Section II addresses the campus policies, procedures and resources which are universal and apply to all/most labs. In order to free lab supervisors from independently having to address these issues in their CHPs, they are provided herein. In Section I of this document the laboratory-specific portion of a lab’s Chemical Hygiene Plan should be addressed.

The issues summarized here are a formal part of the UCSB Chemical Hygiene Plan. Therefore, all lab personnel are responsible for being familiar with this information and following the prescriptions therein as they apply to their work.

An important aspect of the Cal-OSHA CHP safety standard is that it addresses chemical safety issues, but not other laboratory hazards. For example, biological and radiological hazards, electricity, high/low temperature and pressure, etc. Therefore, these issues are largely not addressed here. However, additional laboratory safety information on these topics can be found on the EH&S website: http://www.ehs.ucsb.edu/units/labsfty/labsafety.html
Emergency Response Procedures

The primary informational tool for response to campus incidents is the UCSB Emergency Information Flipchart pictured below. This document should already be posted in, or near, every laboratory, as well as in many offices. If you want a copy for your work area, contact EH&S at x-4899. A Spanish language version of the flipchart is also available.

The last page (at right) should be customized to include your local building information – such as the locations of the following: your building’s Emergency Assembly Point, fire extinguishers and fire alarm pull stations, first-aid kits, AEDs, etc. If it is not customized contact your local Department Safety Rep. The flipchart can also be viewed online at: http://www.ehs.ucsb.edu/homepage/bprsc/203655_Emerg_Flipchart.pdf
Recommended Chemical Spill Cleanup Procedures

You should **NOT** clean up a spill if:

- You don’t know what the spilled material is
- You lack the necessary protection or equipment to do the job safely
- The spill is too large to contain
- The spilled material is highly toxic
- You feel any symptoms of exposure

Instead contact: **x3194 EH&S** (24 hr line – after-hours may have to wait up to 30 min for response to campus. **OR**, if immediately health-threatening call **9-911** (campus phone)

Spill Response Scheme:

Evaluate and Notify

- Assess the toxicity, flammability, or other properties of material (see label & MSDS)
- For flammables, remove or turn off all ignition sources such as motors, pumps, fridges.
- Determine if there is an immediate health threat to you or your neighbors. If so, alert neighbors, isolate the area and call for help using the phone numbers above.
- If spill is minor, begin cleanup following steps below

Containment/Cleanup

- Don gloves, eye protection, lab coat, etc.
- Contain and absorb spill using absorbents appropriate for the material*
- Protect floor drains with absorbents or barriers around them
- Package and label waste. Include contaminated clothes, rags, equipment, etc.
- Store temporarily in a fume hood if material is volatile

Followup

- Send [Hazardous Materials/ Waste Pickup Request](http://www.ehs.ucsb.edu/units/labsfty/labrsc/emergency/spillcloset.htm) form to EH&S
- Reorder and restock cleanup materials used
- Inform EH&S if there were any personnel exposures, or release to the environment

*Self-help spill cleanup equipment are available using graduate master keys in some buildings: http://www.ehs.ucsb.edu/units/labsfty/labrsc/emergency/spillcloset.htm
Fire Extinguishers, First-Aid Kits and Emergency Showers/Eyewashes

Fire Extinguishers: EH&S conducts hands-on fire extinguisher training for most individuals who attend the EH&S General Laboratory Safety class. There is also an online extinguisher tutorial/video that individuals can complete and receive credit. All campus individuals are strongly encouraged to complete this tutorial and view as refresher training when needed.

Online Fire Extinguisher Usage Tutorial:
http://learningcenter.ucsb.edu/default.aspx

Need “UCSB Net ID” to login. Then search on “fire extinguisher”

First-Aid Kits: Individual laboratories should have their own 1st aid kit nearby in a location known to all. Supplies should be checked regularly. Departmental kits may not be accessible after-hours.

Emergency Showers and Eyewashes

- Know where your nearest unit is – they are typically within the lab, or in the corridor nearby. Units must be accessible always- no items should block access.
- In the case of chemical exposure to eyes or skin, flush the injury for a minimum of 15 minutes. Be sure to leave the eyes open under the water to flush them.
- Showers can also be used to extinguish a fire on an individual, or their clothing
- Consult the MSDS for the material and show it to the doctor/nurse.
- Facilities periodically flushes emergency eyewash stations and showers. Lab personnel should also flush the eyewashes at least monthly as a precautionary measure. Call Facilities at x2661 if you have concerns regarding a specific unit.
- Eyewashes are plumbed with potable water - unlike the rest of the laboratory which is often on "industrial water"- and is considered safe to use on your body.
- Many eyewash/shower units are not equipped with a floor drain. This is because they are so infrequently used that they did not justify the cost of a drain when the building was constructed. Also, it is illegal to flush materials down the drain.
In July 2011 UCSB instituted a new policy on the use of personal protective equipment (PPE) in laboratories. The policy is intended to help protect lab workers from injury, meet regulatory requirements for worker protection and bring more consistency to PPE practices across the campus. All members of the lab community have responsibilities under the policy - particularly lab supervisors/faculty and lab workers. Full policy is at:

http://www.policy.ucsb.edu/policies/policy-docs/lab-personal-protective-equip.pdf

Key aspects of the policy are summarized on a wall poster which is mounted in all labs, or lab suites. A copy of the poster is presented on the following page. Other notable aspects of the policy are noted here, but the full policy should be consulted for details:

- The PPE requirements only apply when “handling” hazardous materials, not when an individual is simply in the same room with materials.

- Radiological and biological hazards are not covered by the policy. Instead, PPE for these is regulated by the Radiation and Biosafety Committees, respectively.

- Lab gloves must not be worn in public areas unless traveling to an adjacent lab space, or needed for protection while transporting materials between work areas – in which case clean gloves should be donned.

- Safety eyewear must meet American National Standards Institute (ANSI) requirements. This is denoted by the “Z87” stamp on the eyewear. Most reading glasses do not meet ANSI standards. Approved safety glasses can be worn over contact lenses, or splash goggles can be worn over reading glasses, or one can obtain prescription safety glasses.

- Contaminated lab coats should not be laundered at home. Some campus labs use a local vendor to provide routine lab coat laundering services. The service is inexpensive. See:

http://www.ehs.ucsb.edu/units/labsfty/labsc/factsheets/Lab_Coats_FS35.pdf
Personal Protective Equipment ("PPE") Required for UCSB Laboratory Workers

<table>
<thead>
<tr>
<th>CATEGORY 1: Significantly Hazardous Chemicals</th>
<th>CATEGORY 2: Hazardous Chemicals Not in Category 1</th>
<th>CATEGORY 3: Selected Physical Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES<sup>5</sup>:</td>
<td>EXAMPLES<sup>5</sup>:</td>
<td>EXAMPLES<sup>5</sup>:</td>
</tr>
<tr>
<td>- Corrosives (above 5% by weight acids/bases)<sup>6</sup></td>
<td>- Dilute Corrosives (below 5% by wt. acids/bases)<sup>6</sup></td>
<td>- Glassware under vacuum</td>
</tr>
<tr>
<td>- Flammables/Combustibles above one liter</td>
<td>- Flammables/Combustibles less than one liter</td>
<td>- Vessels under pressure</td>
</tr>
<tr>
<td>- Materials Absorbed Through Skin</td>
<td>- Skin Irritants</td>
<td>- Mechanical hazards</td>
</tr>
<tr>
<td>- Skin and Eye Irritants</td>
<td>- High Toxics and Neurotoxins</td>
<td>- Hazardous chemicals not in Category 1,2</td>
</tr>
<tr>
<td>- Strong Air or Water Reactives, e.g. Pyrophorics<sup>6</sup></td>
<td>- Strong Oxidizing Agents</td>
<td>-</td>
</tr>
<tr>
<td>- Carcinogens and Reproductive Toxins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM PERSONAL PROTECTIVE EQUIPMENT REQUIRED

- **"ANSI-Approved" Safety Eyewear**
 - YES

- **Appropriate Laboratory Gloves**
 - YES

- **Lab Coat, or Fire-Resistant Lab Coat**
 - YES
 - (for flammables use fire-resistant coat)

- **Close-toed Shoes and Long Pants**
 - YES

Footnotes

a. Meet American National Standards Institute standards as indicated by "Z87" stamp on frame. Most "reading glasses" do not meet this standard. Eyewear in campus storerooms meet ANSI standards, as do prescription safety glasses from optometrists. Alternatively, safety goggles may be worn over glasses.

b. Consult container label or MSDS to verify "chemical hazard class(es)." Definitions and specific chemical examples are provided in the full Policy.

c. Consult container label, MSDS or a Glove Reference Chart to determine appropriate glove. Glove charts are available via the EH&S Website and other sites.

d. Definition of "dilute corrosive" as below 5% by weight is only for purposes of this Policy. Corrosives can have other properties requiring gloves at any concentration, e.g., HF acid is particularly penetrative/damaging to skin.

e. While handling flammable liquids (particularly pyrophorics), it is strongly recommended that synthetic clothing not be worn which is more ignitable than cotton.

Additional Policy Elements

- Lab gloves should not be worn in public areas except where clearly needed for personal protection, e.g., during transportation of some particularly hazardous materials.
- PPE for infectious biological agents and radioactive materials are not covered by this Policy. They are regulated independently by the campus Biosafety and Radiation Safety Committees, respectively.
Campus Storerooms: Laboratory Personal Protective Equipment

You can buy supplies from any campus storeroom. The supplies noted below are only the basic PPE available. There are many more materials, styles and brands of PPE available thru safety products suppliers (e.g., Fisher Scientific and Lab Safety Supply).

Biological Sciences Storeroom, Bldg. 569, x-2537 or 3234
- Gloves - Nitrile; Latex (powdered); Vinyl examination; Wash gloves (Playtex); High/low temperature
- Eyewear - Goggles; Glasses
- Lab coats - Cotton (fire-resistant)
- Sharps disposal - Syringe/razor size; Broken glass box
- Waste disposal bags - Autoclaveable; Biohazard; Hazardous materials
- First aid supplies - Bandages; Cotton

Chemistry Storeroom, room 1432, x-2563
- Lab Coats - Cotton (fire-resistant)
- Gloves - Nitrile; Latex; "Wash gloves"; Cleanroom glove (triple polymer)
- Eyewear - Glasses
- Sharps disposal - Syringe/razor size
- First aid supplies - Bandages; Gauze pads; Burn cream

Physics Storeroom, Broida Hall, room 1301, x-2747
- Lab Coats - Cotton (fire-resistant)
- Gloves - Nitrile; Neoprene; Latex; Vinyl; Wash gloves (Playtex); Canvas; Leather; Nylon; Finger cots (latex)
- Eyewear - Goggles; Glasses w/ side shields; "Neon"-colored glasses; "Malibu" glasses (wraparound)
- Respirator - Dust mask
- Ear plugs - foam type
- Sharps disposal - Broken glass box
- Waste disposal - Glass and plastic 1-gallon containers
- First aid - Band aids

University Center Bookstore, x-3271
- Eyewear - Goggles; Glasses
- Lab coats – Cotton/polyester

Respirators: note that per worker safety regulations, individuals who believe they may need a respirator to do their work must contact EH&S at x8787 to be certified to wear one and be fitted with the appropriate type, size, etc.
Selecting the Proper Gloves

The correct gloves protect the hands against chemicals; the wrong gloves enhance chemical contact. The type of glove used should be chosen to be compatible with the particular chemicals being used. **There is no universal glove that protects you from all chemicals. To choose the correct glove go to a Glove Reference Chart.** (links below).

Disposable gloves provide minimal protection and should be used with this in mind. If using concentrated solvents, corrosives or toxics, more heavy-duty gloves should be worn. These provide more protection, but have the drawback of being more cumbersome. Note also that about 15% of the population is allergic to latex

Check gloves before use for signs of wear or penetration. Disposable gloves can be inflated by mouth to check for pinholes. When removing gloves, be careful to avoid touching the outside of the gloves with your bare hands. Always remove gloves before leaving the lab.

All gloves are permeable, only the permeation rate varies, depending on the chemical, the glove material and thickness, temperature, concentration gradient, etc. However, once a material begins to permeate the glove, it will continue until an equilibrium is reached. You must, therefore, decide when it is appropriate to discard contaminated gloves.

Glove Reference Charts *(No guarantees are made regarding the accuracy of these charts. Recommend cross-checking at least two sites.)*

http://www.bestglove.com/site/chemrest/default.aspx *(Best Co.)*

http://www.mapaglove.com/ChemicalSearch.cfm?id=0 *(MAPA Professionals)*

Exposure Limits For Laboratory Chemicals

Below are airborne chemical concentration limits above which you cannot legally be exposed at work. These limits are administered by the California Occupational Safety and Health Administration (Cal-OSHA). The materials listed here are a fraction of the total number (500+) of OSHA exposure limits – for the complete list, see: http://www.dir.ca.gov/Title8/5155table_ac1.html If workers have reason to believe they might be exposed above these limits, or to other hazardous materials, contact EH&S, x-4899, or x-8243. All workers should strive to maintain their chemical exposures to as low as reasonably achievable at all times, regardless of the legal exposure limits. Given the volatility of these materials, they should always be used in a properly functioning fume hood, or glove box, or in completely-sealed systems. The “S”notation indicates material is also readily skin absorbed.

<table>
<thead>
<tr>
<th>Chemical Abstracts Registry Number</th>
<th>Skin</th>
<th>Name</th>
<th>Permissible Exposure Limit</th>
<th>Short-term Exposure Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ppm(e) mg/M(^3)(f) Ceiling Limit(g) ppm(e) mg/M(^3)(f)</td>
<td></td>
</tr>
<tr>
<td>64197</td>
<td></td>
<td>Acetic acid</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>67641</td>
<td></td>
<td>Acetone</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>75058</td>
<td></td>
<td>Acetonitrile</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>79061</td>
<td></td>
<td>Acrylamide</td>
<td>--</td>
<td>0.03</td>
</tr>
<tr>
<td>7664417</td>
<td></td>
<td>Ammonia</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>62533</td>
<td></td>
<td>Aniline</td>
<td>2</td>
<td>7.6</td>
</tr>
<tr>
<td>7440371</td>
<td></td>
<td>Argon (h)</td>
<td>--</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic and inorganic arsenic compounds</td>
<td>--</td>
<td>0.01</td>
</tr>
<tr>
<td>71432</td>
<td></td>
<td>Benzene</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>7726956</td>
<td></td>
<td>Bromine</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>7440439</td>
<td></td>
<td>Cadmium metal dust, as Cd</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>630080</td>
<td></td>
<td>Carbon monoxide</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>7782505</td>
<td></td>
<td>Chlorine</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>67663</td>
<td></td>
<td>Chloroform; trichloromethane</td>
<td>2</td>
<td>9.78</td>
</tr>
<tr>
<td>110827</td>
<td></td>
<td>Cyclohexane</td>
<td>300</td>
<td>1,050</td>
</tr>
<tr>
<td>287923</td>
<td></td>
<td>Cyclopentane</td>
<td>600</td>
<td>1,720</td>
</tr>
<tr>
<td>75343</td>
<td></td>
<td>1,1-Dichloroethane</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>68122</td>
<td></td>
<td>Dimethylformamide; DMF</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>74840</td>
<td></td>
<td>Ethane</td>
<td>(h)</td>
<td></td>
</tr>
<tr>
<td>141786</td>
<td></td>
<td>Ethyl acetate</td>
<td>400</td>
<td>1,400</td>
</tr>
<tr>
<td>64175</td>
<td></td>
<td>Ethyl alcohol; ethanol</td>
<td>1,000</td>
<td>1,900</td>
</tr>
<tr>
<td>74851</td>
<td></td>
<td>Ethylene</td>
<td>(h)</td>
<td></td>
</tr>
<tr>
<td>60297</td>
<td></td>
<td>Ethyl ether</td>
<td>400</td>
<td>1,200</td>
</tr>
<tr>
<td>50000</td>
<td></td>
<td>Formaldehyde</td>
<td>0.75</td>
<td>--</td>
</tr>
<tr>
<td>75127</td>
<td></td>
<td>Formamide</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>64186</td>
<td></td>
<td>Formic acid</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7440597</td>
<td></td>
<td>Helium</td>
<td>(h)</td>
<td></td>
</tr>
<tr>
<td>142825</td>
<td></td>
<td>n-Heptane</td>
<td>400</td>
<td>1,600</td>
</tr>
<tr>
<td>110543</td>
<td></td>
<td>n-Hexane</td>
<td>50</td>
<td>180</td>
</tr>
</tbody>
</table>

Revised 12/11
<table>
<thead>
<tr>
<th>Number</th>
<th>Chemical</th>
<th>Symbol</th>
<th>PEL</th>
<th>C</th>
<th>ppm</th>
<th>Footnotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333740</td>
<td>Hydrogen</td>
<td>(h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10035106</td>
<td>Hydrogen bromide</td>
<td></td>
<td>3</td>
<td>10</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>7647010</td>
<td>Hydrogen chloride; muriatic acid</td>
<td></td>
<td>5</td>
<td>7</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>7664393</td>
<td>Hydrogen fluoride, as F</td>
<td></td>
<td>3</td>
<td>2.5</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td>7722841</td>
<td>Hydrogen peroxide, as H₂O₂</td>
<td></td>
<td>1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7783064</td>
<td>Hydrogen sulfide</td>
<td></td>
<td>10</td>
<td>14</td>
<td>50 ppm</td>
<td></td>
</tr>
<tr>
<td>26675467</td>
<td>Isoflurane</td>
<td></td>
<td>2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67630</td>
<td>Isopropyl alcohol</td>
<td></td>
<td>400</td>
<td>980</td>
<td>500</td>
<td>1225</td>
</tr>
<tr>
<td>7439976</td>
<td>Mercury, metallic and inorganic compounds as Hg</td>
<td>S</td>
<td>--</td>
<td>0.025</td>
<td>0.1 mg/M³</td>
<td></td>
</tr>
<tr>
<td>67561</td>
<td>Methyl alcohol; methanol</td>
<td></td>
<td>200</td>
<td>260</td>
<td>1000 ppm</td>
<td>250</td>
</tr>
<tr>
<td>75092</td>
<td>Methylene chloride; dichloromethane</td>
<td></td>
<td>25</td>
<td>87</td>
<td>125</td>
<td>435</td>
</tr>
<tr>
<td>7697372</td>
<td>Nitric acid</td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10102439</td>
<td>Nitric oxide</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>7727379</td>
<td>Nitrogen</td>
<td>(h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75525</td>
<td>Nitromethane</td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1321126</td>
<td>Nitrotoluene</td>
<td></td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111659</td>
<td>Octane</td>
<td></td>
<td>300</td>
<td>1,450</td>
<td>375</td>
<td>1800</td>
</tr>
<tr>
<td>8012951</td>
<td>Oil (mineral) mist, particulate</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20816120</td>
<td>Osmium tetroxide, as Os</td>
<td></td>
<td>0.0002</td>
<td>0.002</td>
<td>0.0006</td>
<td>0.006</td>
</tr>
<tr>
<td>10028156</td>
<td>Ozone</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>109660</td>
<td>Pentane</td>
<td></td>
<td>600</td>
<td>1,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127184</td>
<td>Perchloroethylene</td>
<td></td>
<td>25</td>
<td>170</td>
<td>300 ppm</td>
<td>100</td>
</tr>
<tr>
<td>108952</td>
<td>Phenol</td>
<td></td>
<td>5</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7664382</td>
<td>Phosphoric acid</td>
<td></td>
<td>--</td>
<td>1</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>1310583</td>
<td>Potassium hydroxide; caustic potash</td>
<td></td>
<td>--</td>
<td>2</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>110861</td>
<td>Pyridine</td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61790532</td>
<td>Silica, amorphous, total dust</td>
<td></td>
<td>-</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61790532</td>
<td>Silica, crystalline; quartz total dust</td>
<td></td>
<td>-</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1310732</td>
<td>Sodium hydroxide; caustic soda</td>
<td></td>
<td>--</td>
<td>2</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>7664939</td>
<td>Sulfuric acid</td>
<td></td>
<td>--</td>
<td>1</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>109999</td>
<td>Tetrahydrofuran</td>
<td></td>
<td>200</td>
<td>590</td>
<td>250</td>
<td>735</td>
</tr>
<tr>
<td>108883</td>
<td>Toluene; toluol</td>
<td></td>
<td>50</td>
<td>188</td>
<td>500 ppm</td>
<td>150</td>
</tr>
<tr>
<td>76039</td>
<td>Trichloroacetic acid</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330207</td>
<td>Xylene; xylool; dimethylbenzene</td>
<td></td>
<td>100</td>
<td>435</td>
<td>300 ppm</td>
<td>150</td>
</tr>
</tbody>
</table>

Footnotes to Table. Footnotes have been edited for clarity. For the complete Cal-OSHA Table and complete footnotes, see: http://www.dir.ca.gov/Title8/5155table_ac1.html
(b) The substances designated by "S" in the skin notation column indicates material may be absorbed into the bloodstream through the skin, the mucous membranes and/or the eye, and contribute to the overall exposure. Appropriate protective clothing shall be provided for and used by employees as necessary; (d) Permissible Exposure Limit (PEL) = the maximum permitted 8-hour time-weighted average concentration of an airborne contaminant; (e) Parts of gas or vapor per million parts of air by volume at 25°C and 760mm Hg pressure; (f) Milligrams of substance per cubic meter of air at 25°C and 760mm Hg pressure; (g) Ceiling Limit = the maximum concentration of an airborne contaminant to which an employee may be exposed at any time. A numerical entry in this column represents a ceiling value in addition to the PEL values. A “C” notation means the value given in the PEL columns are also ceiling values; (h) A number of gases and vapors, when present in high concentrations, act primarily as asphyxiants without other adverse effects. A concentration limit is not included for each material because the limiting factor is the available oxygen. (Several of these materials present fire or explosion hazards.); (o) Short-Term Exposure Limit = a 15-minute time-weighted average airborne exposure which is not to be exceeded at any time during a workday even if the 8-hour time-weighted average is below the PEL.
Material Safety Data Sheets (MSDS)

What is a MSDS?
Material Safety Data Sheets are a summary of the health hazards of a chemical material and associated recommended safe work practices. MSDS are required by OSHA to be made readily available by chemical vendors to the purchasers of their chemicals. If you work in a lab, then OSHA says you should:

- be aware of what an MSDS is and their relevance to your health and safety
- be aware of how to access MSDS for your work area
- maintain MSDSs that are received with incoming chemical shipments and ensure that they are readily accessible to lab employees during each work shift when they are in their work area(s). Electronic access per below is acceptable with a printer.

MSDS Sources

- University of California-MSDS Database
- Laboratory Chemical Safety Summaries (not MSDS, but quality info aimed at labs)
- Fisher Scientific MSDS
- Vermont Safety Information Resources, Inc. (SIRI)
- Sigma-Aldrich MSDS
- MSDS Provider (Manufacturer-direct access)
- Matheson’s Gases
- Oxford University MSDS Database
- Where to Find MSDSs on the Internet
- Canadian MSDS for Micro-Organisms

Another Information Resource
The book entitled: Prudent Practices in the Laboratory by the National Research Council is widely considered to be a definitive reference. It can be purchased, but is also available free on-line in a searchable format. It is strongly recommended that all lab workers have ready access to this important reference.
Fume Hood Usage Guide: Standard Hoods

(standard hoods do not have the VAV control box shown on the next page)

1. **Always work with the sash at the level of the red arrow sticker (picture on next pg.) and close it when not attended.** To adequately protect you, your hood should be producing a face velocity of about 100 ft/min. EH&S tests your hood and posts the red arrow stickers at the **proper sash level to:**
 - satisfy the required air flow and protect you (10 - 100 times more than full open sash) against airborne chemicals
 - protect you better from incidents within the hood

2. **All hoods on campus are equipped with an air flow monitor and/or alarm to warn you if the air velocity is too low – see examples pictured below. If the alarm engages, lower the sash slightly until the alarm stops. Do NOT disengage or override the alarm. If your alarm sounds consistently this could indicate a real problem – call EH&S.**

3. Always work at least 6 inches inside the hood to maximize capture efficiency.

4. Store only a minimum of equipment and chemicals in your hood because:
 - Excess materials will block the air flow into the intake slots at the back of the hood. Permanent equipment should be raised on a jack to allow the air to flow smoothly.
 - Most fires and explosions occur in the hood. Minimizing chemical volumes will reduce the chances of a small accident escalating into a large one.

5. Keep the lab windows closed. Drafts from open windows and doors can significantly affect your hood’s performance (100 ft/min is only a few miles/hr of air).

*“Magnihelic gauge” – note normal gauge position. Significant deviation may indicate condition low air flow.

*Visible/audible alarm

Sounds during low-flow
Fume Hood Usage Guide: Variable Air Volume Hoods ("Phoenix" system)

Variable Air Volume (VAV) hoods — unlike a standard hood above — automatically adjust the face velocity to stay within recommended safe work levels (~ 100 ft./min). A VAV hood is easily distinguished by the gray control box on the hood – pictured below.

1. **If the low-flow alarm engages, lower the sash until the alarm stops.** DO NOT over-ride the safety alarm by permanently engaging the "Mute" or "Emergency" button (e.g., with tape). If your hood is consistently alarming call EH&S (x-4899).

2. Always work with the sash at or below the level of the **red arrow sticker** (below), because:
 - If most bldg. sashes are raised, this will generate a hood alarm, and at your neighbor’s hood, due to the limited capacity of your building’s ventilation
 - A lowered sash protects you against airborne chemicals and incidents up to 100 times more than at sash full open.
 - The lower the sash, the greater the **energy conservation** – lower sash when not in use

3. Store only the minimum of equipment and chemicals in your hood because:
 - Excess materials block air flow into the slots at back of the hood. Permanent equipment should be raised on a stand to allow the air flow into the lower slot.
 - Most lab fires and explosions occur in the hood. Minimizing chemical volumes will reduce the chances of a small accident escalating into a large one.

4. Always work at least 6 inches inside the hood to maximize hood capture efficiency.
Safe Storage of Chemicals

INTRODUCTION: If incompatible chemicals are mixed a fire, explosion, or toxic release can occur. In earthquake-prone areas like UCSB, it is vital that chemicals be stored safely. Note however, that chemicals can often fall into more than one hazard category and therefore the chemical label and/or MSDS should be reviewed for specific storage requirements. Separate chemicals by adequate distance, or preferably by using physical barriers (e.g. storage cabinets). Avoid using the fume hood for chemical storage - this practice may interfere with the proper air flow of the hood. For especially dangerous materials, use a secondary container (e.g. plastic tub) large enough to contain a spill of the largest container. The list below is prioritized for materials that are commonly used in a research lab. This chart indicates the most obvious chemical incompatibilities, and provides a basic segregation plan. For more specific chemical incompatibility information, please consult the manufacturer's MSDS.

ACIDS
Examples: Acetic Acid; Chromic Acid*; Hydrochloric Acid; Hydrofluoric Acid; Nitric Acid*; Perchloric Acid*; Phosphoric Acid; Sulfuric Acid (* Indicates strong oxidizing acids, store per oxidizers section)

Storage Precautions:
- Store bottles on low shelf areas, or in acid cabinets.
- Segregate oxidizing acids from organic acids, AND flammable materials.
- Segregate acids from bases, AND from active metals such as sodium, potassium, etc.
- Segregate from chemicals which could generate toxic gases such as NaCN, iron sulfide, etc.

BASES
Examples: Ammonium Hydroxide; Potassium Hydroxide; Sodium Hydroxide

Storage Precautions:
- Separate bases from acids.
- Store bottles on low shelf areas, or in acid cabinets.

FLAMMABLES-fuels are reducing agents, examples:

<table>
<thead>
<tr>
<th>Acetone</th>
<th>Ethyl Ether</th>
<th>Propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>Gasoline</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>Hexane</td>
<td>Toluene</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Isopropyl Alcohol</td>
<td>Xylene</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>Methanol</td>
<td></td>
</tr>
</tbody>
</table>

Storage Precautions:
- Store in approved flammable storage cabinet(s) (required if there is > 10 gallons in the lab).
- Separate from oxidizing acids and oxidizers.
- Keep away from any source of ignition (flames, localized heat or sparks).
- Use only "flammable storage" (desparked) refrigerator
OXIDIZERS—react violently with organics

Example Solids
- Iodine
- Nitrates, Salts of
- Peroxides, Salts of
- Potassium Ferricyanide
- Sodium Nitrite

Storage Precautions:
- Keep away from organic solvents, and other combustible materials (i.e. paper).
- Keep away from reducing agents.

Liquids
- Bromine
- Hydrogen Peroxide
- Nitric Acid
- Perchloric Acid
- Chromic Acid

PEROXIDE-FORMING CHEMICALS—peroxides can be explosive and shock-sensitive.
Examples: Ethers and acetals with alpha-hydrogen (e.g. ethyl ether, tetrahydrofuran); Alkenes with allylic hydrogen (e.g. cyclohexene). Store tightly sealed to exclude oxygen. Dispose within recommended guidelines—usually 6 months for ethers.

PYROPHORIC SUBSTANCES—spontaneously ignite in air.
Examples: Some finely divided metals; Some organoaluminium compounds (LiAlH₄, Al(CH₃)₃);
Silane; phosphorus, yellow (should be stored and cut under water)

Storage Precautions:
- Rigorously exclude air and water from container.
- Store away from flammables.

WATER REACTIVES—react violently with water to yield flammable or toxic gases.
Solids: Calcium carbide, magnesium, lithium, potassium, sodium
Liquids: phosphorous trichloride, thionyl chloride

Storage Precautions:
Rigorously avoid exposure to water and air
Store away from flammables
Lithium, Potassium and sodium should be stored under kerosene or mineral oil

HIGHLY TOXICS, CARCINOGENS, REPRODUCTIVE TOXINS
These chemicals can be very hazardous by themselves, or in combination with other chemicals. If they are easily inhaled, (gases and volatile liquids) then they are particularly hazardous.

Liquids - Seal tightly and store in a ventilated cabinet apart from incompatibles. Use secondary containment (e.g. plastic tub) to contain any spills.
Examples: Formaldehyde; Carbon disulfide; Mercury; Nickel carbonyl; Cyanide solutions

Gases - Store in a gas cabinet or other ventilated cabinet
Chlorine; Fluorine; Hydrogen chloride; Nitric Oxide; Hydrogen Cyanide

Solids - Store away from incompatibles (usually acids) that would release toxic gas upon contact.
Examples: Cyanides, Salts of; Sulfides, Salts of
Refrigerators and Freezers in Labs

Certain refrigerator/freezer units are designed specifically for the storage of flammable materials, and to prevent potentially injurious explosions in your lab. These units have special protections to prevent ignition of flammable vapors. For example, the light switch, defrost feature, and thermostat inside the storage compartment have been removed or relocated. This is critical, since flammable vapors coupled with an ignition source could result in an explosion. In other words, a normal kitchen refrigerator is not safe for the storage of chemicals.

Before purchasing a new refrigerator/freezer, or using an existing one, consider whether chemicals will be used for storage in this unit. Note that many lab refrigerators will be around for decades and therefore one can not guarantee that a normal unit will never be used for flammables storage. There are two types of refrigerator/freezer models that should be considered, depending on the type of hazardous material the unit will store.

I. **FLAMMABLE MATERIAL STORAGE REFRIGERATORS/FREEZERS:**
 These have no internal electrical components which could trigger an explosion inside the unit. These must always be used for storage of volatile materials.

II. **EXPLOSION-PROOF REFRIGERATORS/FREEZERS:**
 These units prevent triggering of interior or exterior explosions in a hazardous environment. Every motor and thermostat is designed to prevent arcing and possible ignition. Used for storage of volatile materials in areas with explosive atmospheres. These are rarely necessary in lab environments.

All refrigerator/freezer purchases and modifications on campus **must be pre-approved** by EH&S at X8243. In addition, all approved refrigerator/freezer units storing flammable materials must be labeled with signage reading, “Approved For Chemical Storage, No Food Storage”. All refrigerator/freezer units not approved for storage of flammable materials must be affixed with signage reading, “Explosion Hazard”. Please feel free to contact EH&S for your free labels.

This picture shows a UCI lab refrigerator which exploded when chemicals were inappropriately stored in a unit which was not designed for flammables storage.
Documentation of occupationally-related safety training is a legal requirement under Cal-OSHA. Accordingly, as of July 2010, UCSB instituted a policy regarding baseline safety training of all “laboratory workers”. In short, the policy requires that all lab workers complete once one of the EH&S general lab safety orientations as outlined below before being issued access to their lab. Descriptions of these orientations and other EH&S trainings is provided on the next page.

Note that the trainings below are generic and do not address the specific hazards, procedures and practices for a particular laboratory, or individual. Lab supervisors/PIs are still responsible under the law for ensuring this has been provided.

All members of the campus lab community have responsibilities under the policy - particularly the individual’s home department which is responsible for ensuring new lab workers are identified and guided into the appropriate training session. The full policy can be found at:

Summary of Required General Laboratory Safety Orientations

1. **Required for Graduate Students**: A 3-hour instructor-led general laboratory safety orientation (LS01) is offered regularly - generally twice per quarter. This training is more in-depth than those listed below and generally includes hands-on fire extinguisher training. This training is open to any laboratory worker and all are encouraged to take this course.

2. **Required for Other (Non-Graduate Student) Laboratory Workers**, (e.g., postdoctoral scholars, undergraduates working in research labs, visitors, etc.). Complete the appropriate one of the two online modules below. Alternatively, a PI/supervisor may, at their discretion, choose to send a worker to the more in-depth live training in #1.

 - **Laboratory Orientation for Chemical Users (LS40)**
 - **Laboratory Orientation for Non-Chemical Users (LS41)**
Non-UCSB Online Laboratory Safety Training

Documented safety training is a legal requirement of the California Occupational Safety and Health Administration (Cal-OSHA) and ideally also helps prevent accidents. Within the UC system are a number of online safety training modules as listed below - the link below will lead to the trainings. However, as someone accessing these modules from outside that campus the training will not be documented. It is therefore recommended that the supervisor have the training documented at the time of completion.

Link to UC (Non-UCSB) Online Laboratory Safety Training:
http://ehs.ucsb.edu/training/lsvideo1.html

UC Online Training Catalog:
(campuses may have their own version/title for the same subject matter)

- Carcinogen Handling Safety
- Centrifugation Hazards
- Chemical Storage
- Compressed Gas & Cryogen Safety
- Day in the Life of the Lab (A PI's Perspective)
- Earthquake Safety
- Pressure Safety
- Cryogenics Safety
- Electrical Safety
- Ergonomics for the Laboratory
- Fire Safety in the Laboratory
- Fire Extinguishers Usage
- Formaldehyde Safety
- Fume Hoods
- Hazardous Materials Spill Response
- Hazardous Materials Shipping
- Material Safety Data Sheets
- Nanomaterials Handling
- Practicing Safe Science
- Pyrophoric Reagents Safety
Laboratory Self-Inspection Checklist

EH&S inspects all labs on campus at least annually. However, lab supervisors should initiate regular self-inspections (recommend minimum of twice-a-year) for the following reasons:

☐ By memos of understanding between UCSB, SB County Fire and the State Fire Marshal, EH&S is allowed to perform safety surveys on their behalves. Without these agreements, these agencies would conduct their own inspections. However, to continue these agreements, their expectations are that regular self-inspections and corrections are done by every lab.

☐ Under California law (OSHA), supervisors (PIs) are required to: “…include procedures for identifying and evaluating work place hazards including scheduled periodic inspections to identify unsafe conditions and work practices.”

☐ Beyond any regulatory requirements, doing regular self-inspections will clearly increase the level of safety in your area.

To aid you in your surveys, a Self-Inspection Checklist follows, this is not a list of every possible safety issue, but are guidelines. Most items are based on applicable regulations or campus policy. Radiation and biohazard issues are not addressed here because they are highly specialized and these labs receive targeted EH&S visits. More information is also available at http://ehs.ucsb.edu. The links (underlined) noted below lead to further information.

Hazardous Waste

1. Are personnel generating chemical waste trained with waste disposal procedures? Individuals who have not taken the UCSB Lab Safety course (live or on the EH&S website) must take this course before generating hazardous waste for disposal Online Hazardous Waste Course* (EH09)
 (*This course meets the waste management training requirements enforced by Santa Barbara County Fire Department)

2. Is the illegal disposal of hazardous substances down the drain prevented?

3. Are all hazardous waste containers labeled with the official UCSB Hazardous Waste label?
 ☐ Is there a supply of UCSB waste labels handy (available in all campus storerooms)?
 ☐ Are labels attached when the first drop of waste goes into the container?
 ☐ Are all constituents in mixtures identified, as well as their concentrations?
 Do not use generic names like “Waste or Organic waste” instead use proper chemical name(s).
 ☐ Are chemically incompatible wastes segregated?
 ☐ Is there a designated area for storage of hazardous waste and labeled as such?

4. Are lab personnel instructed not to dispose of chemicals by fume hood evaporation?
 By law, waste containers must be capped when not in use.

5. Is chemical waste disposed of within 9 months of their accumulation, regardless how much material remains inside the container? Contact EH&S for waste disposal.
6. Are all “sharps” (syringes, razor blades, etc.) disposed in puncture resistant, leak-resistant containers and sealed tightly to preclude loss of contents? Is there a designated glass disposal container in the lab? Lab personnel are designated to empty these into their bldg. dumpster – custodial staff will not do so.

Chemical Safety

1. Is your lab’s legally-required (Cal-OSHA) Lab-specific Chemical Hygiene Plan (CHP) completed and shared with all workers? Does your CHP address your use of OSHA Particularly Hazardous Substances (human carcinogens, acute toxins, reproductive toxins, and pyrophorics)?

2. Are Cal-OSHA regulated carcinogens such as formaldehyde/formalin, dichloromethane, and benzene always used in a fume hood and with appropriate gloves/eyewear?

3. Are chemical containers properly labeled with chemical name and hazard type of the material? (e.g., repackaged materials and lab-synthesized materials)

4. Are stored chemicals segregated according to hazard classification/compatibility (acids, bases, flammables, oxidizers, water reactives, etc.)? Compatibility Chemical Storage Chart

5. Are all containers of peroxide-forming chemicals (e.g., ethers) dated upon receipt and disposed of within the prescribed time period (contact EH&S for prompt disposal)? Peroxides can be explosively unstable.

6. Are flammable liquids kept inside approved flammable storage cabinets whenever possible?
 - Are flammable liquids always stored in approved flammable cabinets when in excess of 10 gallons?
 - Do you have large volumes of flammable solvents (e.g., multiple cases or drums) in storage that are above what is reasonably needed? The quantities of flammables that can legally be stored are regulated by CA Fire Code. Please don’t stockpile large quantities of these materials.
 - Are flammable liquids stored away from sources of heat, ignition, electrical equipment or sources of static electricity?
 - **Static Electricity** - Electrically ground and bond all containers/equipment involved in pumping flammable liquids to prevent buildup of static electricity as an ignition source.

7. Are acid volumes greater than 10 gallons stored in an approved storage cabinet?

8. Is there a catch pan beneath manometers, barometers, etc. which contain large quantities of mercury?

9. It is highly recommended chemical spill cleanup materials be available. Are all lab workers familiar with the location of spill cleanup kits?
 Note: Some lab buildings have a designated “spill closet” – generally keyed to graduate master key.
Laboratory Equipment

1. Are the **eyewash and emergency shower** stations free of any obstructions which would prevent ready access? These units are tested by FM regularly. It is recommended that labs run their eyewash units monthly to maintain clean water in the lines.

2. Have **fume hoods** been EH&S tested within the year (check label)?
 - Is air flow indicator present and operational?
 - Is lab equipment or chemicals within the hood minimized? **Keep only items in use.**
 - Are air entry slots at back of hood kept clear of obstructions? **Cluttered hoods interfere with proper air flow.**
 - Is front sash lowered to the appropriate level "red arrow mark" when hood is in use?
 If the low flow alarm engages, lower the sash until the alarm stops. If the alarm continues when the sash is lowered to the "red arrow mark" please contact EH&S at x3743. **DO NOT over-ride the safety alarm by permanently engaging the "Mute" or "Emergency" button (e.g., with tape, paper clips, etc.).**
 - Has everyone using a fume hood been properly trained to use their fume hood? General fume hood use is covered in the Lab Safety training course. The training however, does not cover lab specific hood use. Ensure lab members have documented their fume hood training.

3. Are biological safety cabinets certified annually or when moved (check sticker) and are they the proper types for the work being conducted?

4. Do labs using non-ionizing radiation equipment, such as **lasers**, microwaves, and ultraviolet light sources, have properly posted warning signs and shielded work areas?

5. **Compressed gas cylinders**
 - Are cylinders dated upon arrival and contents clearly identified?
 - Inspect regularly for defects, i.e., excessive rust, dents, bulging, corrosion, etc.
 - Unidentified cylinders should be marked, “CONTENTS UNKNOWN” and returned to the manufacturer.
 - Non-lecture bottles > 5 years old must be returned to the manufacturer to ensure they are safety/pressure tested as required by law (“**hydostatic testing**”) **Check stamped date on cylinder when it was last tested.**
 - Corrosive gases (e.g. HF, HBr, HCl, H$_2$S) can degrade the cylinder over time and/or produce dangerously high pressures of hydrogen. **Dispose of within 2 years.**
 - Are cylinders secured upright with welded chains and brackets bolted to a wall, bench or other secure object (no type C-clamps)?
 - Are protective caps in place while cylinders are not in use?
 - Flammable gases (e.g. hydrogen, methane) tubing should be equipped with a **flash arrester** to prevent flame flashback to cylinder. Available from gas vendors.
 - Use of large cylinders of **highly toxic gases** must be reviewed/approved (EH&S, x-4899)
 - Highly toxic gas cylinders should be equipped with a **reduced flow orifice** (RFO) connection to prevent rapid discharge of cylinder contents. Available from gas vendors.
 - Gas cabinets with toxic or flammable gas delivery manifolds often have an **excessive flow detection and auto-shutoff valve** built-in. Verify that this safety feature is functional.

6. Are **refrigerators** for storing flammables clearly posted with signage indicating they are safe for such storage? (e.g. “desparked”, "lab-safe", "explosion-proof", “flammable storage”).
☐ Are refrigerators that are NOT designed for flammables storage clearly marked as such? (this is very important to prevent a potential explosion)
☐ Are all chemical storage refrigerators marked with “No Food” labels?
☐ Refrigerators in labs utilized for food or drinks should be marked “Food Only/No Chemicals?”
☐ Laboratory refrigerators/freezers and other sensitive equipment, preferably should be connected to emergency back-up power.

7. Is the location of manuals/instructions for each piece of equipment known?

8. Are the belt guards in place on all pumps, etc?

9. Solvent stills with water-reactive drying agents
 - Are solvent stills clearly labeled with the solvent name and drying reagent?
 - Ensure water-flow monitor are installed that would automatically shut off the heating mantles in the event of cooling water loss (pic with arrow). Periodically test monitors by shutting down the water flow to verify the system is functioning properly. They are available commercially. We strongly recommend this important safety device be adopted. Fires associated with stills are not uncommon, including the $3M fire at UCI in 2001.

 ![Image of solvent stills]

 - Ensure secondary containment pans are beneath the stills. In the event of a system leak this should capture any leakage and prevent the solvent from spreading out and finding an ignition source.

 - Quenching Solvent Stills -The quenching of used still-pots is potentially dangerous but can be done safely if appropriate precautions are taken. "See EH&S Fact Sheet on still quenching"

Pressurized Systems - Inspect and test all high pressure vessels regularly per the owner’s manual requirements. Each vessel should have a use-log of: experiment conditions, dates of runs, testing/maintenance history, etc. in order to track the vessel's life-expectancy. Pressure vessels must include a functional over-pressurization rupture disk to prevent a catastrophic vessel failure.

General Safety Concerns

1. Has EH&S posted outside the lab an emergency information contact sign, indicating the hazards within, responsible persons and phone numbers? Is the information correct? Call EH&S to update (x-8243).

2. Has the UCSB Campus Emergency Flip Chart been posted in the work area? Has the, Building-Specific Emergency Information section page has been completed?
3. Are rooms containing regulated hazardous substances, such as infectious and radioactive materials, posted with warning/caution signs and appropriate authorizations?

4. Are aisles free of obstructions? Minimum clearance for lab aisles is 2 ft.

5. Do work areas have adequate ventilation and illumination? To prevent suffocation, verify that fresh air is supplied to cold/hot rooms that are used as work areas. Check emergency door release and alarm mechanisms.

6. Are fire extinguishers functional (plastic seal and pin intact and show pressure)? Are the extinguishers located on their wall hooks? Is the area in front of the extinguishers accessible?

7. Are food and beverages kept out of chemical work areas and out of laboratory refrigerators?

8. Is the lab poster summarizing the UCSB Laboratory Personal Protective Equipment (PPE) Policy in place and are all affected individuals following its provisions? Do all individuals understand the different requirements for Category 1, 2 and 3 hazardous materials?

 For more PPE information, including glove reference charts, click [link](#).

9. Have all respirator users been certified through the UCSB Respiratory Protection Program as run by EH&S?

10. Is the level of housekeeping in the lab satisfactory?
 - No hazardous materials stored on floor
 - Aisles and corridors kept clear
 - Lack of clutter
 - Glassware that is scattered on benchtops and out in the open clutters working areas, is easily broken, will not stay clean, and, if dirty, may be confused for clean glassware and potentially negate any viable research.

11. Lab doors are fire-rated and therefore can not be propped open with a wedge or other device. Discontinue use of these, or SB County Fire may confiscate them and cite the University.

12. Secure your highly hazardous materials, e.g. highly toxic gas, radiation, select biological agents. Ensure the lab door(s), freezers, refrigerators, storage cabinets, etc. with these materials are locked whenever the lab is left unattended.
Electrical Safety

1. Check electrical equipment and inspect for frayed cords and damaged connections? Electrical tape is prohibited.

2. Multiple outlet strips plugged directly into a wall outlet? Does the power strip have a circuit breaker? Extension cords are not to be permanently used with power strips.

3. Are employees instructed not to use extension cords in place of permanent wiring (use allowed if only on a temporary, immediate, basis)? Have permanent receptacles installed for long-term electricity needs.
 • Ensure extension cords are 14-gauge (heavy duty) at a minimum, and temporarily servicing only one appliance or fixture?
 • Ensure extension cord is plugged directly into receptacle. Extension cords should never be used plugged end-to-end; use the proper length cord.
 • If extension cords are used, ensure cords are not running through walls, ceiling or doors?

4. Are cord guards provided across an aisle or other passageway to prevent tripping?

5. Is all electrical equipment grounded (three-prong plugs) or double insulated?
 – Are 3-prong plugs only used for 3-prong receptacles, and never altered to fit into an outlet?

6. Are Ground Fault Circuit Interrupters in place where electrical outlets are in use within 6 feet of water? Ensure GFCI’s are working properly by using the “test” button.

7. Are all electrical boxes, panels and receptacles covered to protect against electrocution?

8. Are control switches, circuit breakers and electrical panels free of obstructions? These items must be accessible at all times.

9. Are high voltage control panels and access doors posted?

Seismic Safety

1. Do shelves used for chemical storage have seismic restraining devices (e.g. lip, wire or bungee cord) installed to prevent chemicals from falling? Is all valuable or hazardous equipment seismically anchored?
Visit web links for securing lab instruments & appliances:

- Seismic Protection Methods for Lab Instruments and Appliances
- Earthquake Restraint System for Optical Tables

Securing Your Stuff

2. Are cabinets, chemical shelves and furniture over 42 inches in height braced against walls to prevent their falling over in the event of an earthquake?

3. Is overhead storage of heavy objects minimized and restrained?

Administrative

(Note: these training requirements must be met by supervisors to satisfy their personal regulatory obligations)

1. All lab workers are required to complete the UCSB Lab Safety Orientation to satisfy numerous regulatory training requirements. Verify everyone has attended either the live class for grad students & staff (LS01), or completed the appropriate online course for undergrads and postdocs (LS04). Visit our training history link, to view personnel that have completed the course.

2. Are safety training records generated from the class maintained (Lab Safety Training Checklist) and available for review by employees, EH&S and outside agencies?

3. Are all employees aware of the following:

 - How to access Material Safety Data Sheets (MSDS)?
 - UCSB Laboratory Personal Protective Equipment policy/poster?
 - Know the location of the emergency eyewash/shower station?
 - The Emergency Assembly Point for your building?
 - The location of the nearest fire alarm pull station?
 - The three basic types of fire extinguishers and their applicability?
 - The location/availability of first aid kits within the building?
 - The location of the Automated External Defibrillator (AED), available in some departments?
 - The location of the circuit breaker box?
 - The location/purpose of your building’s Safety Corner bulletin board?
 - The identity of your Department Safety Rep?
 - The availability/purpose of the UCSB Hazard Reporting Form
CHEMICAL WASTE DISPOSAL

REGULATIONS: Hazardous waste regulations are stringent and penalties for violations can be severe. Santa Barbara County inspects UCSB labs for compliance on a regular basis.

STORAGE
• Store chemical waste in a designated area. Label as, “HAZARDOUS WASTE STORAGE AREA”
• Store chemicals in containers compatible with, and durable enough for, the waste. Liquid waste must be in screw-top containers. Do not overfill - allow for expansion.

LABELING
• Identify waste by proper chemical name (no abbreviations or chemical structures).
• List chemical names of hazardous components in that mixture by percent weight.
• Deface existing labels when reusing containers.
• Label and date container(s) when the first drop of waste is added. Hazardous waste shall be given to EH&S for disposal within nine months of start date.
• Use UCSB HAZARDOUS WASTE label on all hazardous waste containers. All portions of the label must be completed. Labels are available for free in all science storerooms—see below.

SEGREGATION: group waste into the following categories:
• halogenated organics (dichloromethane, chloroform) - non-halogenated organics (acetone, methanol, xylene)
• acids with pH 2 or less (HCL, sulfuric acid) - alkaline solutions of pH 12.5 or greater (sodium hydroxide)
• alkali metals and other water reactives (sodium, lithium) - heavy metal solutions and salts (mercury, silver, zinc)
• strong oxidizers (nitric acid, chlorates, permanganates) - cyanides (potassium cyanide)
• unstable chemicals

DISPOSAL
• Chemicals may not be disposed in regular trash, sink disposal, or allowed to evaporate.
• Complete a UCSB Waste Pick-up Request Form. Send by campus mail or fax(X7259).
• Also available on EH&S website http://ehs.ucsb.edu for electronic submission.
 • EH&S cannot accept responsibility for improperly labeled, packaged, and/or segregated chemicals, and will not pick them up.
 • Transferring waste into appropriate containers is the generators responsibility.
 • Waste containers become the property of EH&S and will not be returned
Disposal of Sharps

Sharps are defined as any object having acute corners, edges or protuberances capable of cutting or piercing, e.g. needles, razor blades, glass, etc. These items cannot be disposed of in the normal lab trash. Every year custodians are injured by sharps in trash cans.

1. Lab Glassware Not Contaminated by Hazardous Materials (e.g. Pasteur pipettes)
Place glass into a labeled “Sharps Only” trash box or other sturdy container. Cardboard boxes specifically made and labeled for this purpose are available from scientific supply companies, or in campus storerooms. When full, dispose into the dumpster for your building - custodial staff will not empty.

2. Needles, Syringes, Scalpels Not Contaminated by Hazardous Materials
These are particularly dangerous and require precautions beyond those of glassware:
- Label a rigid puncture-proof container with the words “Sharps Waste” (example pictured, note cardboard is not acceptable)
- Place all sharps into sharps container as they are generated
- When full, tape container closed or tightly lid containers prior to disposal
- Place sealed sharps containers directly into bldg. dumpster, or into the glass container noted above

3. Sharps Contaminated by Hazardous Materials
If sharps are uncontaminated use the procedures above. For contaminated sharps do this:
- **Sharps contaminated with chemicals** - A sharps container as described above should be labeled as “Sharps contaminated with (chemical name)”. Give to EH&S for disposal with other chemical wastes.
- **Sharps contaminated with radioactive materials** - A sharps container as described above should be properly labeled as “Sharps contaminated with (isotope name)”. Dispose via EH&S.
- **Sharps contaminated with biohazardous (infectious) materials** - must be placed in approved red plastic sharps container (picture above, available in storerooms). The sealed containers must be autoclaved before disposal and within 7 days of becoming filled. Place autoclaved container in an opaque bag and place into dumpster, or glass disposal container noted above.