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Abstract—Optical isolators are required to block undesired re-
flections in many photonic integrated circuits (PICs), but the per-
formance of on-chip isolators using the magneto-optic effect has
been limited due to high loss of such materials. Moreover, they
require precise positioning of a permanent magnet close to the
chip, increasing footprint and impeding packaging. In this paper,
we propose an optical isolator on the silicon-on-insulator platform
with record performance and without the use of any external per-
manent magnets. A metallic microstrip above the bonded silicon
microring (MR) is used to generate the magnetic field required for
the nonreciprocal behavior. Simultaneously, the microstrip can be
used to provide 0.6 nm of thermal tuning while preserving over
20 dB of isolation. We measure 32 dB of isolation near 1555 nm
with only 2.3 dB excess loss in a 35 ym radius MR. The tunability,
compactness, and lack of permanent magnets suggest this device is
a major step towards integration in PICs.

Index Terms—Magneto-optics, optical isolator, ring resonator,
photonic integrated circuit, silicon photonics.

I. INTRODUCTION

PTICAL isolators and circulators are devices that possess
O the unique capability of breaking symmetry in the
propagation of light. More specifically, they possess an asym-
metric scattering matrix and break Lorentz reciprocity [1]. The
primary approach to achieve nonreciprocity on chip has been
to integrate magneto-optic (MO) materials with large Faraday
rotation alongside traditional waveguiding materials such as
silicon in order to obtain an asymmetric permittivity tensor [2],
[13]-[21]. An alternative technique without magnetic materials
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involves electro-optic modulation to introduce time-dependent
effects, but the observed isolation has been small [3]-[7] or
the insertion loss is intrinsically large [8]. A third approach
using optical nonlinearity such as the Kerr effect [9] has
recently been under scrutiny as it does not always provide
isolation when forward and backward propagating light are
simultaneously passing through the device [10]. There are some
exceptions to this, such as devices based on stimulated Brillouin
scattering [11]-[12].

In this paper, we will focus on the MO approach using cerium
substituted yttrium iron garnet (Ce:YIG) integrated with silicon
waveguides. When a MO waveguide is placed in a magnetic
field, the resulting nonreciprocal phase shift (NRPS) can be
utilized in an unbalanced Mach-Zehnder interferometer (MZI)
[13]-[18] or a microring (MR) [19]-[21] to achieve optical iso-
lation. MZI isolators have demonstrated over 30 dB of isolation
as well as large bandwidth, but their excess loss are high due
to large footprint and high losses in Ce:YIG (~60 dB/cm). MR
isolators are much more compact, meaning they can have lower
loss. However previous experimental work has showed an iso-
lation smaller than 19.5 dB and, due to their narrow bandwidth,
the MR isolators are limited to a specific wavelength.

Moreover, a drawback of both MZI and MR isolators to date
has been the use of a permanent magnet to generate a static
magnetic field, which is unattractive for integration on chip and
impedes packaging. In this work, we eliminate the need of a
permanent magnet by using a metal microstrip to directly gen-
erate the magnetic field above a bonded Ce:YiG/Si MR isolator.
In this work, we also propose to use the same deposited metal
for thermal tuning of the MR isolator, allowing for the align-
ment of the isolation wavelength, which is a critical issue for
the implementation of a narrowband device. This can correct
for fabrication errors as well as compensate for varying ambient
temperatures. Finally, the small footprint of the device keeps the
excess loss small. A summary of demonstrated integrated iso-
lators using Ce:YiG on silicon is shown in Fig. 1, including the
results achieved in this work. In this figure, we plot the isolation
ratio of the device versus the excess loss to the silicon wave-
guide of previous devices. All of these devices fundamentally
operate for TM mode. TM isolators have been integrated with a
TE-TM polarization rotator [18] for operation in TE mode.

II. DESIGN AND SIMULATION

The device is an all pass MR filter with 35 pum radius. The
Ce:YIG is bonded on a silicon-on-insulator (SOI) MR that is
critically coupled to a straight bus waveguide for maximum
extinction ratio [22]. When a radially outward magnetic field
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Fig. 1. Comparison of integrated Ce: YIG based isolators on silicon. Our result

showing 32 dB of isolation with 2.3 dB of excess loss is shown in the bottom
right. The devices in [20] and [21] are fabricated with pulsed-laser deposition
of polycrystalline Ce:YIG, while all the others involve wafer bonding of single
crystalline Ce: YIG.
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Fig. 2. (Top) Perspective view of the isolator. (b) Microscope image of the
fabricated chip, with splits for various microring geometries. The inset shows a
close-up of one of the fabricated isolators.

is applied to the MR, the propagation constants of the clock-
wise (CW) and counterclockwise (CCW) transverse magnetic
(TM) modes are differentiated. The resulting NRPS splits the
resonances of the CW mode and the CCW mode. When the
operating wavelength of the laser is aligned to one of the reso-
nances, then isolation is achieved for the TM mode. A schematic
as well as a microscope image of the device is shown below in
Fig. 2(a) and (b), respectively.

A. Nonreciprocal Waveguide Analysis

The nonreciprocal behavior of the Ce:YIG/Si waveguide is
analyzed using an accurate nonreciprocal mode solver based
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Fig. 3. (a) The cross-section mode profile, in which a silica layer of 10 nm is
assumed between the silicon microring and the bonded Ce:YIG layer. (b) The
resonance wavelength split for the TM mode with respect to Si and Ce:YIG
layer thicknesses. A waveguide width of 600 nm is assumed. (c) A simulation
depicting the maximum theoretical isolation for different coupling ratios into
the microring.

on the finite element method [22], [23]. Due to the relatively
large MR radius, we consider an equivalent straight wave-
guide to compute the modes and the optical effective index.
Both the MR and the bus waveguide are made of silicon (re-
fractive index ng; = 3.44) with an air cladding (n,;, =1). A
Ce:YIG layer (ng,y ¢ = 2.22), which was previously grown on
a (Ca, Mg, Zr)-substituted gadolinium gallium garnet (SGGG,
nggee = 1.97) substrate, is bonded over the silicon layer.
SGGGQ is the preferred native substrate for Ce:YIG due to lat-
tice matching. All materials are low loss at A = 1550 nm, with
the exception of the Ce:YIG which has a propagation loss of
about 60 dB/cm, included in the mode analysis. The resonance
wavelength split (RWS) between the CW and the CCW mode
due to the MO garnet is computed as in Eq. (1) where Ang
is the effective index variation and n, is the average group
index with respect to the two directions computed at room tem-
perature. The RWS Ao is also proportional to the Faraday
rotation 6

Aneff
. 1
" (1)

Alyo = A

The cross-section of the waveguide is designed to maximize
the RWS, while preserving the single mode TM operation. In
the optimal structure, the center of the mode is located near the
boundary between the Ce:YIG and the Si, as shown in Fig. 3(a)
for the CW mode. In reality, there is a thin layer of SiO; at this
boundary, due to O, surface activation prior to the bonding [24],
[25], which can degrade the NRPS for even a thin 10 nm layer
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of SiOy which is assumed in the computation. Considering a
Faraday rotation of Ce:YIG equal to —4500 deg/cm at room
temperature (i.e., T = 20 °C), the RWS has been evaluated.

The maximum RWS is obtained for a 215 nm thick by
600 nm wide silicon waveguide, and a 400 nm thick Ce:YIG
layer. For those values, the maximum of the field is located close
to the Ce: YIG/SiO4/Si interfaces. For this reason, a large bend
radius (i.e., 35 pm) and a thicker silicon waveguide are preferred
(i.e., 230 nm) in order to keep the mode better confined and re-
duce the bending loss. Our simulations predict that for a 400 nm
thick layer of Ce:YIG bonded to a 230 nm tall by 600 nm wide
Si waveguide with 10 nm oxide layer, the nonreciprocal RWS
reaches the maximum value of 0.52 nm, as shown in Fig. 3(b).

For the proposed device, the critical power coupling coeffi-
cient K is about 11.68%, which corresponds to a gap of about
245 nm. The critical coupling condition is crucial for MR -based
systems because it is related to the MR -waveguide distance,
which is difficult to be experimentally controlled with high
accuracy. Due to the large propagation loss in the Ce:YIG, the
coupling condition is less strict and a variation up to 15% from
the optimum gap can still guarantee an isolation higher than
20 dB, as shown in Fig. 3(c).

B. Electromagnet Design

To provide the radially outward/inward magnetic field at
the ring-Ce:YIG interface, we apply a current through the mi-
crostrip, which closely follows the shape of the ring resonator.
Since the microstrip is patterned on the back of the bonded
Ce:YIG die, it is important to know the thickness of the SGGG
substrate. The strength of the magnetic field in the ring is in-
versely proportional to the distance between the ring and the mi-
crostrip (i.e. thickness of SGGG substrate). In our simulations as
well as our actual device, we target a thickness of 5 ym. Such a
layer is sufficiently thin that an applied current in the microstrip
generates a strong magnetic field at the Ce:YIG/SiO2/Si inter-
face, which induces in-plane magnetization in the Ce:YIG and
cause a significant RWS. However, the SGGG is thick enough
to avoid optical loss due to overlap between the optical mode
and the metallic microstrip. We computed the radial magnetic
field using COMSOL Multiphysics, as shown in Fig. 4.

C. Thermal Performance

When the current is applied to the microstrip, it causes a local
heating in the MR due to the Joule effect. This induces a thermal
resonance wavelength shift as well as a change in the Faraday
rotation. We compute the local temperature distribution in the
device using COMSOL, as shown in Fig. 5.

By performing the modal analysis of the ring with respect to
the temperature, the thermal resonance wavelength shift AAr is
valued as

A 3neff on;
Arp = o Z i/ AT )

where the derivative dn; /0T depends on the materials with
refractive index n;, while On.q /On, can be computed from the
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Fig. 4. Simulation of the external magnetic field generated by the electric
current in the metal microstrip. The 3D plot shows the intensity of the radial
magnetic field in the Ce:YIG plane assuming 200 mA DC current. On the same
plane, the arrows indicate the direction of the magnetic field. In the plot on
the right, the radial component of the field with respect to the ring (denoted by
the bold arrow) as a function of the DC current in the spiral is reported.
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Fig. 5. Simulation of the temperature distribution generated by the electrical
current. The 3D plot shows the temperature distribution in the silicon plane
assuming 200 mA DC current. In the same plot, the streamlines show the current
flux in the spiral. In the plot on the right, the increment of the average temperature
in the silicon microring is reported as a function of the DC current in the spiral.

TABLE 1
MODAL TEMPERATURE DEPENDENCE

Material ~ 9n; /9T [1/°C] Onegs /On;
Ce:YIG 9.1.107° 0.405
Si 1.86.1074 0.691
Si0, 1.0.107° 0.275
Air 1.0.10°6 0.021

The temperature dependence of the material
refractive index (middle column) as well as
the effect on the modal index (right column).

mode solver [23]. The results of this analysis are summarized
in the table below.

For the device under investigation, we calculate a resonance
wavelength shift of 0.0716 nm/°C for the TM mode. Due to the
temperature variation, #x decreases [26] so the MO RWS is

AL
0{)”0- ep(H,,,)Jr@-AT 3)
2

Ao (H:, T) = a7

where 6%, = —4500° /cm and ALY, is the corresponding RWS
atroom temperature. As the device heats up, the Faraday rotation
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will change by dfp /dT = +44 degrees/°C [26]. Combining
these two effects, we find that the total resonance wavelength
shift is

Ax = Axp(T) + %Ak vo(H,, T) (4)

where = refer to the CW and CCW modes, respectively.

III. DEVICE FABRICATION

A bare SOI wafer with 500 nm thick Si device layer and
1 pm buried oxide was thinned to 230 nm using dry oxidation at
1050 °C and subsequent buffered HF etch. The wafer was then
patterned using 248 nm DUV lithography, and dry etched using
a Bosch process to form the waveguides and resonators. Splits
were fabricated with varying MR radius as well as coupling
gap. In preparation for wafer bonding, both the SOI and the
Ce:YIG/SGGG sample are rigorously cleaned, and activated
with Oy plasma. The Ce:YIG is directly bonded onto the SOI
patterns, and then annealed at 200°C for 6 hours under 3 MPa
of pressure to strengthen the bond. After the bond, a 1 yum
layer of SiO, is sputtered everywhere on the chip as an upper
cladding. Next, the SGGG substrate is thinned by mounting
the sample against a flat chuck, and polishing using a series of
increasingly fine lapping films. The thickness of the SGGG is
monitored using a micrometer and confirmed to be ~5 pm with a
separate measurement. Variation of thickness across the sample
is roughly 1-2 pm due to imperfect leveling of the chuck. The
patterns for the metal microstrip and contact are defined on the
backside of the SGGG, and then 22 nm of Ti is deposited as
an underlayer, followed by 1.5 um of Au using electron-beam
evaporation. Aluminum can also be used as a CMOS compatible
metal with low resistance. The metal microstrips and contacts
are released with a lift-off procedure. Finally, the sample is
diced and the facets are polished. All the fabrication steps are
schematically shown in Fig. 6.

IV. RESULTS AND ANALYSIS
A. Faraday Rotation Measurements

The Faraday rotation of the Ce:YIG is measured by detecting
the polarization rotation of light as it passes through a thin
film of Ce:YIG on SGGG sample and it is shown in Fig. 7(a)
[27]. In this experiment, the direction of propagation as well as
the direction of magnetization is out of plane with respect to the
sample. The slight decrease after the saturation is due to rotation
in the SGGG substrate (paramagnetic). Since the modal overlap
with SGGG is negligible, this does not affect the performance of
the device. To extract the correct value of the Faraday rotation of
the Ce: YIG, we remove the contribution of the SGGG by linear
fitting the slope for [H|>2.0 KOe. The processed experimental
results are then fit to a hyperbolic tangent function as well as a
moving average, showing good agreement in Fig. 7(b).

It is worth noting that the magnetization in Fig. 4 is in-plane,
as opposed to the out-of-plane magnetization that was measured
in the Fig. 7. While the Faraday rotation constant is the same for
both configurations (—4500 deg/cm), the in-plane configuration
is called the easy axis of magnetization and only ~50 Oe is
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Fig. 6. Process flow beginning with (a) 230 nm thick SOI wafer that is
(b) patterned to form waveguides. (c) Ce:YIG/SGGG is bonded. (d) SiO is
deposited. (e) Mechanical polishing to thin SGGG substrate. (f) Contact and
microstrip deposition on the backside of the SGGG.

required to saturate the Ce:YIG. On the other hand, ~3 kOe is
needed for saturate the Ce:YIG in the perpendicular direction,
i.e., the hard axis of the garnet.

For the device under test, below saturation (50 Oe), 5 varies
linearly with respect to H, like in the measurement shown in
Fig. 7. Based on the simulations in Fig. 4, we are in this linear
regime for currents smaller than 250 mA. Magnetic hysteresis
is also an effect that may be present below saturation, but it has
a negligible effect in the device under test, as we later show.

B. Device Characterization

The optical characterization was carried out at room temper-
ature (20 °C) on a temperature controlled stage. A polarization
maintaining lensed fiber with 2.5 um spot size was securely
clamped in a fiber rotator and rotated to a TM polarization. We
measure a polarization extinction ratio of 26 dB. The PM fiber
is used to couple light into the device while a SMF is used to
couple light out of the device through the polished edge facets.
A tunable laser and power sensor is used to scan the transmis-
sion spectra from 1500 nm to 1570 nm to observe the intrinsic
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Fig.7. Faraday rotation with respect to magnetic field applied in the hard axis
(out of plane). The results are shown (a) pre and (b) post data processing.

MR spectra. For more isolation measurements, a finer step of
0.1 pm was used to observe the split of a single resonance.

The current was applied using a through beryllium copper
probes, and swept from O to 220 mA. Applying currents higher
than 250 mA resulted in permanent damage to the microstrip
due to heating. At each current value, we switch from positive
to negative current to measure the RWS while maintaining the
same temperature. Switching the direction of the external mag-
netic field is equivalent to switching the propagation direction
of light. This is experimentally verified in the appendix. We
then calculate the thermally induced shift by taking the average
resonance wavelength of the two spectra, and comparing that
to the spectrum of the MR when the zero current is applied.
By comparing the spectra with positive and negative applied
current, optical nonreciprocity and isolation can be evaluated.
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Fig. 8. Spectrum measurement at I = +80 mA. The inset shows the intrin-
sic spectrum of the microring over multiple free spectral ranges without any
applied current.

C. Measured isolation

The two transmission spectra are shown in Fig. 8 when
480 mA of current is applied, for which we measure 32 dB
of isolation. The electrical power used by the isolator was
9.6 mW when accounting for the measured 1.5 2 resistance
of the microstrip. The optical loss of the device is measured by
comparing our device to a straight Si reference waveguide of
the same dimensions, but without the bonded Ce:YIG. Of the
10 dB loss, we simulate 1.2 dB of scattering loss at the interfaces
between the channel waveguide with a silica cladding and the
Ce:YIG bonded waveguide using Lumerical FDTD software.
The remaining 8.8 dB is due to absorption in the Ce:YIG layer.
Since the length of the bus (3.5 mm) is much longer than the iso-
lator (70 pm diameter) due to placement of splits on the mask as
seen in Fig. 2, there are the equivalent length of eight isolators,
including the microstrip and contacts, along the bus waveguide.
Therefore, the excess loss of a single isolator is (1.2 + 8.8/8)
= 2.3 dB. The excess loss can be further reduced by con-
sidering silicon nitride cladding (n = 2) in place of silicon
dioxide due to a smaller refractive index contrast with the
Ce:YIG (n = 2.22), and smaller mode mismatch at the lateral
bonded interface.

The MO RWS between CW and CCW propagation is
0.16 nm, which suggests that while the magnetization of the
Ce:YIG is not saturated for 80 mA of current, it is more than
enough for high isolation. This is in contrast to previously
demonstrated isolators, in which the magnetization is always
saturated due to the use of a strong permanent magnet. Since
the MR is narrowband, any resonance split larger than 0.1 nm
will result in an isolation that is equal to the full extinction ra-
tio of the MR, as is the case here. Therefore, a strong magnet
and full saturation of the Ce:YIG magnetization is not needed
for optical isolation. The device has a 10 dB bandwidth of 1.2
GHz, meaning over 22 dB of isolation is achieved in this range.
This is significantly wider than semiconductor laser linewidths
[28]. In externally modulated laser (EML) applications, the iso-
lator can be integrated between the laser and modulator. For
direct modulation applications, modulation induced sidebands
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Fig. 9. The MO split and the thermal shift are shown with respect to the elec-
trical current. Theoretical and experimental values are compared. In the inset,
the optical isolation is reported over the full tuning range. Since the resonance
wavelength initially shifts to shorter wavelengths at small currents, the curve
appears to double back on itself with increasing current.

may not be isolated although they are not synchronous with the
carrier signal, which lessens their effect on RIN degradation.

D. Thermal Tuning

This microstrip approach also allows us to thermally tune the
operating wavelength by applying different amounts of current.
As we sweep the current from 0 to 220 mA, we can observe
both the nonreciprocal wavelength split (MO split), as well as
the reciprocal thermally induced redshift (Therm. shift) of the
resonances. From the data, the MO wavelength split saturates
at a value of 0.36 nm, which is lower than the originally pre-
dicted 0.52 nm in Fig. 3(b) due to the temperature dependence
of Faraday rotation [26]. Taking into account the Joule heating
effect, we obtain a very good agreement between the experi-
mental and simulated results, as proved in Fig. 9. The tunability
is shown in the inset in which we demonstrate 0.6 nm of tuning
while maintaining over 20 dB of isolation, which is limited by
deviation from critical coupling and damage to the microstrip
at high currents. In our device, the thermal and magnetic effects
are inherently coupled because there is only one microstrip and
Faraday rotation is temperature dependent. Therefore, thermal
tuning also results in changing the nonreciprocal RWS. Re-
ducing the coupling between the two effects by using additional
heater pads could result in higher efficiency, wider tuning ranges,
and optimized control of the thermal tuning.

Hysteresis was not observed to play a strong effect in the tun-
ing, as shown in Fig. 10. We imitate a hysteresis sweep by in-
creasing the current from 0 to 210 mA (blue), back to 0 mA (red),
down to —210 mA (green), and finally back to O mA (black). We
do this in 10 mA intervals, with roughly one minute between
each measurement to allow temperatures to reach steady state.
When we plot the resonance wavelength of the ring, we see that
the data is consistent across the whole sweep. The plot is not
symmetric because it includes both thermal and MO effects.
For positive current, the thermal effect causes redshift while the
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Fig. 10. A measurement of the resonance wavelength as the current is swept
back and forth, similar to a hysteresis loop measurement. The inset shows the
nonreciprocal wavelength split from MO effect.

MO effect causes blueshift. For negative current, both effects
cause redshift.

The inset shows the nonreciprocal wavelength split. There
appears to be no noticeable residual magnetization in the ma-
terial, as shown by the fact that the resonance frequency when
no current is applied is the same at the beginning and the end
of this measurement. There is some difference at higher cur-
rents (~0.03 nm), which could be attributed to some thermal
instability at the higher temperature.

Overall, hysteresis is weak because the magnetic fields do
not fully saturate the magnetization in the garnet. Furthermore,
by switching between positive and negative currents, we are
consistently switching the magnetization in the material. We
believe this has a demagnetization effect on the material, which
limits its hysteresis behavior.

V. CONCLUSION

In conclusion, we have demonstrated a compact integrated
optical isolator on SOI with 32 dB of isolation for the TM
mode, 2.3 dB of excess loss to silicon and 0.6 nm of wave-
length tuning using a current induced MO effect that consumes
9.6 mW of power. This novel method does not require a perma-
nent magnet and instead utilizes a deposited gold microstrip for
thermal tuning as well as a source for magnetic fields. We also
present a model that accurately predicts the thermal, magnetic,
and optical effects and interactions within the device. The device
architecture can be further improved by thinning the SGGG sub-
strate even further for lower power consumption or selectively
removing the Ce: YIG on the bus waveguide to decrease loss. We
believe that the dynamic control of magnetic fields in precise
configurations on chip in this approach can also be utilized in
other MO devices such as MZI isolators, circulators, switches,
modulators, and sensors.

APPENDIX

The direction of the magnetic field applied is always given
relative to the propagation direction of light. In normal operation
of an isolator, the propagation direction is reversed, while the
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Fig. 11.  The spectrum of the isolator for forward and backward propagating

light under different current bias.

magnetic field is unchanged. This effect can also be observed
vice versa, in which we switch the direction of the magnetic field
(current) without changing the propagation direction, as the ef-
fects are mathematically equivalent. We verify this in our device
experimentally by manually switching the propagation direction
of light by changing which fiber is used as input. We expect to
see that this has the same effect as switching the magnetic field.
In practice, it is difficult to maintain the exact same polarization
at the end of the two fibers. The results are shown in Fig. 11
for an applied current of 100 mA. In this case, the isolator was
not near critical coupling so the extinction ratio and isolation
are not as large. Nevertheless, it is evident that +-100 mA with
forward optical propagation is roughly equivalent to —100 mA
with backward propagation. Similarly, 4100 mA with backward
optical propagation is very close to —100 mA in the forward di-
rection. The resonance split is clearly seen in both cases and
verifies the nonreciprocity in the device. The slight error in the
measurement can be attributed to not achieving identical cou-
pling conditions for forwards and backwards propagation with
regard to polarization. This is apparent from noticing the dif-
ference between the forward and backward spectra without any
applied current.
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