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Effects of Si-doping in the barriers of InGaN multiquantum well
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Optical gain spectra of InGaN multiquantum well laser diode wafers having Si-doped or undoped
InGaN barriers were compared. Although evidence for effective band-gap inhomogeneity was found
in both structures, the wells with the Si-doped barriers exhibited a smaller Stokes-like shift. Si
doping suppressed emergence of a secondary amplified spontaneous emission peak at 3.05 eV,
which was uncoupled with the primary one at 2.93 eV. Furthermore Si doping reduced the threshold
power density required to obtain the stimulated emission.19®8 American Institute of Physics.
[S0003-695(198)00630-3

Electrically pumped InGaN multiguantum weMQW)  structure is given in Ref. 4. X-ray diffractidiXRD) analysis
blue laser diode$LDs) grown on sapphire substrates have of the test MQW structuré8 showed that one sample con-
recently been demonstratedand Nakamurat al® have re-  tained 2.5-nm-thick Ig;:Ga, gN/7.0-nm-thick  Si-doped
ported a device lifetime of more than 10 000 h for cw opera-ing oGa, N MQW while the other had 2.5-nm-thick
tion at room temperaturéRT). All high performance blue/ In, ;/Ga, gd\/6.0-nm-thick undoped HpGaodN MQW.
green light-emitting diode$LEDs)*® and purplish-blue or  The Si-doping level was approximately<g0'8 cm~3. To
UV LDs grown on sapphire substrates reported to date minimize light scattering, mechanically polished or reactive-
have InGaN active layers. However, very little is known jgon etched facets were prepared. A 20én wide and 500
about the emission mechanisms of this material. The Spont%m |ong pump|ng beam was directed perpendicu|ar to the
neous emission from InGaN quantum wel3Ws) has been  syrface, but not perpendicular to the mirror facet, to obtain
attributed to the recombination of quantized excitons spapyre single-pass gain.
tially localized at quantum disk¢Q diskg or segmented ASE spectra measured at various excitation-stripe
QWs size potential minimaThis idea is supported by sev- lengths () and power densities?() are shown in Fig. 1. The
eral researchers showing evidence of effective band-gap irSi-doped barrier MQW exhibited an ASE peak at 2.937 eV,
homogeneity in InGaN wells"* Optical gain spectra from \yhich shifted to 2.927 eV with increasinlg [Fig. 1(a)(i)].

the InGaN QWs previously reportEdwere thought to be ;. increasingP an anomalous second péakwas ob-
explained by the well-known electron-hole plasizHP)

model with Coulomb enhancemerit.However, Deguchi

etal* showed characteristic gain emergence in the low- Sdoped bartior undoped barrier
energy portions of the InGaN MQW LD spectra for laser = —— inGaNmMawLD . - InGaN MQW LD |—
material which yielded cw LDSTherefore, it is necessary to A - ) INWIom?
investigate mechanisms for optical gain in more detail to O o 500um B L-150500um
understand the material physics of InGaN QWs. 2|7 50um step m K step
In this letter improvement in the optical gain of InGaN/ g <
InGaN MQW LD¢ due to Si doping in the barriers is dis- g st
cussed in connection with structural, optical, and electronic < | (ii) L=250pm S (v) L=250pm
measurements. E P=0.25-1.5 MW/cm? i P=0.25-2.0 MW/cm?
. g .. & 0.25 MW/cm? step 73] 0.25 MW/cm? step
TE-polarized amplified spontaneous emissiOASE) 2 2
spectra of LD waferglasing at 420 nnf were measured at U w
RT by means of the variable excitation-stripe lengtL ) e (i) L=500um , = {vi) L=500um 1
method'® using a frequency-tripled 10 H-switched 4 A W P=0.2520 Mo
"\ ) ' ) 2 0.25 MW/cm? step 2 0.25 MW/cm? step
Nd™:YAG laser with a pulse duration of 10 ns. The LD
v_vafers were grown by metalorganic chemical vapor deposi- St55—35—56310 750" 255350355310
tion and had ten periods of InGaN/InGaN QWs. The LD PHOTON ENERGY (eV) PHOTON ENERGY (V)
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FIG. 2. ASE intensity as a function df for MQW LD wafers with (a)

Si-doped andb) undoped barriers measured with the excitation power den- PHOTON ENERGY (eV)

sities of 0.5 and 1 MW/ch respectively. Net modal gaig was obtained

through fitting the data using E¢{), the fitting curves being drawn by solid FIG. 3. Comparison of PV, PLE, spontaneous EL, EA, ASE, and lasing EL

lines. spectra for wafers ofa) Si-doped barrier MQW LD(b) undoped barrier
MQW LD, and(c) Si-doped barrier MQW LED. Respective resonance en-
ergies in the wells and barriers are indicated by arrows or an arc.

served forL=500 um [Fig. 1(a)(iii)]. Within the EHP

model?? the redshift due to the increase ®fis due to band-

gap renormalization. The apparent redshift with increasing peak and 120 cm' for the secondary peak, as shown in Fig.
seems to be due to the combined effect of carrier depletion &(b). The emergence of the secondary ASE peak indicates
the end of the pump stripe, which is due to the strong stimuthat there are at least two distinct density of states which are
lated emission intensity there and the subsequent absorptiamcoupled with each other. The origin of this is unclear, but
of the high-energy side of the spectrum, and additional abis most likely due to phase separation during phiype over-
sorption of the high-energy side owing to the large effectivelayer growth, which may act as annealing.

band-gap inhomogeneity. To compare the electronic states, several optical spectra
The net modal gairg was obtained by fitting the ASE are summarized in Fig. 3. Because the potential broadening
intensity 1 (L) using the relation in the wells and barriers was large, static measurements like
A photovoltaic (PV) or photoluminescence excitatiofPLE)
I(L)= E(egL_1)7 (1)  could not distinguish the resonance signal in the wells from

that of the barriers. Therefore, we measured the electroab-

whereA is a constant related to the spontaneous emissioforption (EA) spectrum of a Si-doped barrier MQW LED
intensity. The ASE intensities of the Si-doped barrier MQW having an identical MQW with semitransparent electrodes to
pumped at 0.5 MW/cfare shown as a function bfin Fig. ~ resolved the signal from the wells.
2(a). The data were fit giving of 140 cmi'! at 2.927 eV. The PLE spectra of both MQW LDs exhibited tail stdtes
Since the pump stripe length was 5@0n, L greater than extending more than 100 meV to lower energy from the
500 um left an unpumped region of increasing length, fromquantized energy level, which we define as the energy at
which we obtained the absorption coefficiemtof nearly — which the PLE signal intensity is half the maximum. Pre-
250 cm l. These values are reasonable for InGaN MQwdominant resonance energies are found at 3.104 and 3.070
LDs*1112.14163¢ccording to the EHP theory. eV for the Si-doped and undoped barrier MQWs, respec-

Conversely, the undoped barrier MQW structure oftentively. This 34 meV blueshift could be explained by Cou-
exhibited a secondary ASE peak at 3.05 eV in addition to théomb screening of the piezoelectric field which may induce
primary one, as shown in Fig(d)(iv)—(vi). Although there the redshift of the level due to the quantum confined Stark
exists macroscopic effective band-gap inhomogeneity of theffect (QCSB.>*"*" However, QCSE does not cause the
order of hundreds of micrometers within the wafer, the secband edge broadening, which induces a Stokes-like shift, in
ondary peak was found in many portions. The secondarhe actualquantum-well stafewhen their well thickness is
peak at 3.05 eV appeared fbj275 um atP=1 MW/cn?, less than the bulk free exciton Bohr radidsThe electrolu-
as shown in Fig. ()(iv). ForL=250 um, a precursor of it minescence€EL) peaks appeared at the low-energy tail of the
is noticeable foP)1.5 MW/cn? and only 0.5 MW/criwas  absorption signals and the apparent Stokes-like 8hdfte
needed to observe it fo =500 um, as shown in Figs. 180 and 210 meV for the Si-doped and undoped barrier
1(b)(v) and(vi). Once the secondary peak appeared, the priMQW LDs, respectively. This result strongly supports the
mary peak redshifts to 2.917 eV, which is presumably due t@resence of effective band-gap inhomogeneity in the wells.
depletion of carriers at the light-emitting edge owing to largeThe decrease of the Stokes-like shift in the Si-doped barrier

optical field. Typicalg values are 160 cmt for the primary MQW indicates improved band-gap homogeneity due to
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