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ABSTRACT   
 

The Sampled-Grating Distributed-Bragg-Reflector laser (SGDBR) provides wide tunability (>40nm), and high output 
power (>10mW). Driven by the demand for network re-configurability and ease of implementation, the SGDBR has 
moved from the research lab to be commercially viable in the marketplace.  The SGDBR is most often implemented 
using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections.  
Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical 
gain and the potential for multiple band-gaps along the device structure. These epitaxial 'platforms' provide the basis for 
more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity 
for analog applications.  This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform 
including: integrated Mach-Zehnder modulators, and integrated Electro-absorption modulators. 
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1.Introduction  
Tunable lasers are desirable for a number of applications such as in networks requiring dynamic provisioning, the 
replacement of Distributed Feedback (DFB) lasers in Wavelength Division Multiplexing (WDM) systems, in phased 
radar systems, or for optical switching, and routing[1]. Recently, single-wavelength DFBs have been integrated with 
Electro-absorption modulators (EAMs)[2] and Mach-Zehnder (MZ) interferometric-based modulators[3].  Widely-
tunable Sampled-Grating DBR lasers(SGDBR) have also been integrated with various components over the last few 
years such as Semiconductor Optical Amplifiers (SOAs)[4], EAMs [5], Mach-Zehnder modulators [6,7], and wavelength 
monitors.  Integration leads to reduced costs in packaging, lower insertion losses, and advanced functionality in more 
complex photonic integrated circuits (PICs), despite potential problems of optical and electrical crosstalk. In this paper, 
we will examine a few of the latest integrated photonic devices based on the SGDBR platform as described below.   
 
First we will look at integrated SGDBR- MZ devices.  This type of modulator is preferable due to its superior power 
handling with less photocurrent generation than EAM devices and ease in generation of tailorable chirp.  These MZ 
modulators also can provide low drive voltage – a trade-off with insertion losses in the device.  Secondly, an integrated 
SGDBR – EAM device is examined that incorporates quantum-well intermixing technology with a buried ridge stripe 
fabrication approach.  This approach excels due to the ability to fashion multiple band-gaps across the device – leading 
to optimization of each section – passive, modulator, and active.  
 
 
 



1.1. SGDBR Platform 
The SGDBR itself consists of four sections; gain, phase, front mirror, and back mirror.  The front and rear mirrors 

consist of periodically sampled DBR gratings to form a comb-like reflectivity spectrum[9].  The sampling periods in the 
front and back mirrors differ, which provides a different peak reflectivity spacing, so that only one set of mirror 
reflectivity peaks is aligned within the desired tuning range.  By differentially tuning the front and back mirrors a small 
amount, adjacent reflectivity peaks can be aligned, and the laser will operate at this new wavelength [9].  Due to the fact 
that the mirrors are lithographically defined and require no facet reflections, integration with other components becomes 
fairly simple.  Due to the compatibility of the different fabrication steps in the SGDBR, SOA, detector, Mach-Zehnder, 
and EAM sections, fabrication of an integrated device is no more difficult than fabrication of a SGDBR itself.  Of the 
three different designs presented in this work, the MZ-SGDBR uses a ridge based SGDBR design.  The SGDBRs use a 5 
period front sampled-grating mirror with 4µm bursts and a 12 period rear sampled-grating mirror with 6µm bursts.   The 
tunable laser length is 1.55mm, consisting of the gain section (550µm), phase section (75µm), front and rear mirrors, and 
rear absorber section (100µm).  

 
A backside absorber has been monolithically integrated to reduce reflection from the back facet.  Reflections back into 

the laser are detrimental and require minimization.  This can be accomplished by using a few approaches.  The MMI 
lengths are optimized for minimum reflections and are tapered so that reflections are not coupled back into the laser 
cavity – mostly important in the ‘off’ state.  Additionally, the waveguide design is weakly guided and a multi-layer AR 
coating is employed. The waveguide is continuous throughout the structure – including active and passive sections 
avoiding any potential index discontinuities such as might be found at butt-coupled regrowth interfaces.  The last EAM-
SGDBR uses a buried hetero-structure design outlined in its respective section.   
 

2.  MZ-SGDBR Devices 
 

2.1. Introduction 
 
In high bit-rate digital modulation systems ( ≥ 10Gbit/s), the combination of excess laser bandwidth due to chirp and 
fiber dispersion can limit the link’s reach. Because of this, tailorable chirp modulators are preferable to generate both 
high-speed modulation and either negative or zero chirp depending on the application. Historically discrete LiNbO3 
Mach-Zehnder modulators have been used to achieve high performance.   The aim of this device is to fabricate a 
compact transmitter that can simultaneously provide wide tunability, tailorable chirp, low insertion loss, low drive 
voltage requirements, and high speed.   
 

2.2. Device Layout 
First generation devices consisted of the integration of a ridge-based SGDBR as described in Section 1.1 with a MZ 
section having 550µm long electrodes as shown in Fig. 1.  First generation Mach-Zehnder devices utilized two 
multimode interference (MMI) combiners/splitters (97µm long, 9.5um wide) with curved waveguides extending to a 
separation of 40um in between the two branches.  This yields a modulator length of 1.2mm with a total device length of 
2.75 mm.  In order to decrease the insertion losses, 2nd Generation devices included a 400µm integrated SOA before the 
MZ section.  Also, a forward biased phase shifter was added in order to better control the device phase branch 
differential over the wavelength range to yield optimum extinction and to overcome fabrication inconsistencies.  2nd 
Generation device branch waveguides were separated by 20µm with a 97µm long, 9.5µm wide 1x2 MMI and a 170µm 
long, 10.5µm wide 2x2 MMI with MZ pad electrodes consisting of 200µm, 250µm and 300µm as shown in Fig. 2.  This 
yields a modulator length of 1.1mm for the 2nd Generation devices including a 250µm curved waveguide output.  The 
total device length is 3.3mm long.  
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Figure 1 1st Generation MZ-SGDBR electron micrograph                       Figure 2 2nd Generation MZ-SOA-SGDBR Device layout                                     
 
These designs uses a common quaternary waveguide structure in which the modulator and passive sections are formed 
by etching off the QWs down to the 10nm InP stop-etch layer as shown in Fig. 3.  The active epi-layer structure consists 
of an offset quantum well structure (QW) as shown in Table 1.  These devices use the same doping/composition 
structure in the modulator, mirrors and phase sections for ease of fabrication. Thus, tradeoffs in design must be 
considered. In order to achieve adequate wavelength tuning (40nm) the band-edge (1.4Q) needs to be fairly close to the 
operating wavelength without increasing the on-state internal loss excessively.  The modulator section becomes 
increasingly efficient as the composition approaches the band-edge as well due to higher order electro-optic effects.  
Ideally, the band-gap of different sections can be tailored by using quantum well intermixing.  This approach will be 
explored in Section 4. 

 
 TABLE I   EPILAYER STRUCTURE 
 

 
 

        Figure 3. Integrated Device Side View 
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2.3. RESULTS 

 
DC extinction data is shown for a 550µm length electrode MZ in Fig. 4.  DC extinction characteristics are similar over 

the wavelength range with greater than 18dB.  In order to maximize the extinction ratio the DC bias needs to be 
optimized for each wavelength.  Also, small-signal chirp measurements are shown in Fig. 4 with a one-sided modulation 
format based on the measurement approach in [10].   
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Figure 4 Chirp Parameter as a function of DC extinction curve 

for pi-shifted case with 550µm device (1.38um waveguide) 
 
 As expected, with the device biased with a pi-shift in phase, the chirp parameter is negative in the region when the 
device is turned ‘on’ and positive when turned ‘off’. By controlling the DC biases, large-signal chirp can be tailored as 
desired.  Improved chirp characteristics can be achieved using a push-pull modulation scheme.   
 
2nd Generation devices make use of integrated SOA before the MZ modulator.  This active section provides not only 
added gain, but helps to even out the wavelength dependent power variation as the gain is higher for lower optical input 
powers. Figure 5 shows the gain characteristics as a function of current bias on the SOA for different lengths of devices.                           
 

80 100

m 1570nm
m 1570nm
m 1570nm

-4

-2

0

2

4

6

8

10

0 20 40 60

SOA Gain as a function of length

Gain (dB) 400u
Gain (dB) 500u
Gain (dB) 600u

G
ai

n 
(d

B
) 

Current (mA)

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 SOA gain with 100mA on Gain section of SGDBR 



2.4. Device Bandwidth 
 
Using a low k dielectric such as BCB lowers the parasitic capacitance of the ridge structure considerably.  Second 
Generation devices use a 300nm SiO2 / 2um BCB / 100nm SiO2 sandwich of dielectric beneath the electrode pads as 
shown in Fig. 7.  Figure 8 shows a comparison of the electrical/optical S21 for different length MZ pads under one sided 
modulation.  Each is shown for a bias of -4V.  For each length as the depletion region is extended with reverse bias, the 
bandwidth is improved.  This corresponds to a 3-4GHz change with bias from -1V to -4V. 
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2.5. Conclusion
We have demonstrated mo
DC extinction ratios greate
operation along with the ch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
BC
-8

-6

0 5 10 15 20

S21 -4V 200um 
S21 -4V 250um
S21 -4V 300umN

or

Frequency (GHz)

/BCB/SiO2 low k-dielectric                    Figure 8 Normalized S21 for different device lengths at -4V Bias 

 
nolithic integration of SGDBR-MZ and SGDBR-SOA-MZ devices. These devices have  static 
r than 18 dB .  Second Generation devices demonstrate adequate 3dB bandwidth for 10 Gbit/s 
irp tailorability inherent in the Mach-Zehnder design.  



 

3. Quantum well intermixed integrated SGDBR-EAM 
 

3.1. Introduction 
The monolithic integration of several opto-electronic components requires each portion to possess a specific band 

edge for optimal performance.  For example, each section of the sampled-grating DBR laser should be designed with 
band edges specific to the function of the particular section.  Quantum well intermixing allows for the as-grown active 
region to be shifted precise amounts in the mirror and phase sections to achieve low propagation loss while attaining 
high tuning efficiency.   

This concept can be extended to more complex photonic integrated circuits requiring several band-edge specific 
components. A good illustration of an integrated circuit requiring a third band-edge is the integration of an EAM with an 
SGDBR. The band-edge in the EAM should be such that in the unbiased state the propagation loss due to absorption is 
not significant while under a reasonable reverse bias, the necessary extinction is achieved.  Using the same band-edge 
that has been optimized for the passive components for the EAM requires application of larger than desired voltages 
necessary to obtain significant signal extinction. Clearly, an EAM band-edge intermediate to the active and passive 
sections of the SGDBR would be favorable. With QWI technology, this can be achieved on a single chip. 

 The QWI technology not only allows for the realization of three or more specific band edges, but also permits  the use 
of the centered quantum well design. The optical mode overlap with the centered quantum wells is improved by 50% 
over the offset quantum well design, thus increasing the modal gain, and reducing the threshold current.  Also, because 
QWI does not change the average composition, and only slightly changes the compositional profile, there is a negligible 
index discontinuity at the active/passive interface.  This eliminates the parasitic reflections that can degrade device 
performance.  
 

3.2. Quantum Well Intermixing Background 
 
There are several techniques used to accomplish QWI, impurity-induced disordering (IID) [17], the impurity-free 

vacancy-enhanced disordering (IFVD) [18], [19], and photoabsorption-induced disordering (PAID) [20] are just a few.  
In this work we employ the implant enhanced inter-diffusion method, which relies on the diffusion of point defects, 

specifically vacancies, created during an ion implantation.  This method has been shown to have good spatial resolution, 
and be controllable using anneal time, temperature, and implant dose [20].  Wide ranges of implant energies have been 
used in this process from the MeV range down to tens of keV.  Commonly, these implants are performed on full lasers 
structures, where the vacancies are created in the upper cladding, and must diffuse long distances before reaching the 
quantum wells.  Although this is not detrimental to the intermixing itself, the device performance may be hindered by the 
redistribution of precisely placed doping interfaces.  This can be avoided by using a partially grown laser structure and a 
sacrificial cap layer which can be subsequently removed and the upper cladding regrown as described in [21].  While 
this demonstrated such a concept, the process was not optimized, as multiple implant and anneal cycles were required to 
achieve significant intermixing. 
 

3.3. EAM Design 
Electro-absorption modulators have been monolithically integrated with the SGDBR, and were spaced 10 microns ahead 
of the front SGDBR mirror. The mask was such that single section EAMs of varying lengths were included. A schematic 
of one of the integrated circuits is shown in Fig. 12.  Since QWI only smears the interfaces between the quantum wells 
and barriers, the quantum wells still remain after the intermixing is completed. This allows for the exploitation of the 
quantum confined Stark effect in the EAM.  



 
 

 
                

 
 
 
 
 
 
 
 
 

Figure 12. SGDBR-EAM Device Layout 
 

3.4. Process 
 

The epitaxial base structure, shown in Fig. 13, was grown on a sulfur doped InP substrate using a Thomas Swan 
horizontal-flow rotating-disc MOCVD reactor.  The active region consists of either seven or ten 7.0 nm compressively 
strained (1.3%) quantum wells, separated by 8.0 nm tensile strained (0.3%) barriers, centered within two 1.3Q layers 
designed to optimize the optical mode overlap with the quantum wells.  Following the active region, a 15 nm InP stop 
etch, a 20 nm 1.3Q stop etch, and a 450 nm InP implant buffer layer was grown.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Base growth structure 
The active regions were masked with 500 nm of SixNy, and an ion implant was carried out using P+ at an energy of 100 
keV, yielding a range of 90 nm, with a dose of 5E14 cm-2, using a substrate temperature of 200 °C [15].  The implant 
buffer layer was designed to completely capture the ion implant, creating vacancies far from the active region.   
 

These vacancies were then partially diffused through the structure during a 90-second, 675 °C rapid thermal anneal 
(RTA), yielding the desired band-edge for the EAM.  The implant buffer layer above the EAM sections was removed 
using a wet etching process, stopping on the 1.3Q stop etch layer.  The sample was then subjected to an additional 110-



second rapid thermal anneal blue-shifting the regions where the implant buffer layer remained.  This second anneal was 
used to obtain desired band edge for the mirror and phase sections.  The remaining implant buffer layer and 1.3Q stop 
etch layers were removed using a wet etch process, leaving a thin planar InP surface just above the waveguide.  This 
gives access to the high field region of the optical mode, which is ideal for etching high coupling coefficient gratings, on 
the order of 300 cm-1, directly into the waveguide.   
The sampled grating mirrors were defined by RIE etching deep gratings, 800Å, directly into the waveguide through a 
SixNy sampling mask.  The gratings were then planarized using an optimized MOCVD regrowth.  Following the 
planarizing regrowth, a ridge was RIE etched through the waveguide structure, etch damage was removed using a 
bromine-based polishing etch.  The ridge was buried in p-type InP with an InGaAs contact layer during a second 
MOCVD regrowth designed to yield a planar buried ridge stripe (BRS) geometry.  The contact layer was etched to a 
width of 6 µm, positioned directly above the original etched ridge.  A proton implant was performed along side the laser 
and EAM structures to reduce current leakage and parasitic capacitance in the device [14].  A blanket of SixNy was 
deposited 200 nm thick, and a via to the contact layer etched to facilitate the Ti/Pt/Au contact, patterned using a liftoff 
process.  The substrate was lapped to a thickness of 90 µm, and a Ti/Pt/Au contact was deposited for the back-side n-
contact.  The devices were cleaved into bars and anti-reflection coated.  The die were separated, soldered to aluminum 
nitride carriers, and wire bonded, for continuous-wave testing.  

 

3.5. Quantum Well Intermixing Results 
 
The intermixing process was calibrated using several samples cleaved from an implanted seven quantum well base 

structure, as described in the previous section.  These samples were annealed at 675°C for various times ranging from 
30-seconds to 300-seconds at 30-second intervals and the extent of the intermixing was measured by room-temperature 
photoluminescence.  As the vacancy front moves through the quantum well region the blue-shift increases linearly.  
Once the vacancy front has moved through the quantum well region there is a saturation of the blue-shift.  This 
saturation of the blue-shift can be observed above 120 nm as shown in Fig. 14.  

 
        Figure 14. PL Shift as a function of RTA time                                        Figure 15. PL intensity for the three different sections 
                                              
After the 30, 60, 90, 120-second anneals, the implant buffer layer was removed from the respective samples.  These 

samples were then subjected to additional anneal cycles.  We found that removing the implant buffer layer halted the 
blue-shift during these anneals.  The arrest of the blue-shift is the result of the removal of the abundance of vacancies, 
necessary for intermixing, along with the implant buffer layer.   

With this process it is possible to achieve any number of band-edges across the wafer, limited only by the practical 
number of lithographic process steps.  For this work, only three band-edges were needed, the as grown bandgap for the 



gain regions, a band-edge ideal for the mirror and phase tuning sections, and an intermediate band-edge for the EAM.                         
We found the quality of the QWI material in all three regions to be quite good as characterized by the peak intensity 

and FWHM of the photoluminescence curves.  The photoluminescence curves for a ten quantum well sample, used in 
this work, are shown in Fig. 15. 

 

3.6. Active/Passive Fabry-Perot BRS Lasers 
An important parameter in the SGDBR device is the modal loss in the mirror and phase sections at the gain peak of 

the active region.  Not only does the modal loss in these regions have a large effect on the un-tuned output power of the 
device, but also, plays a large role in determining the power ripple in the tuning band.  Using active/passive devices, 
where the passive region is composed of intermixed quantum wells, the modal loss of the intermixed quantum wells, 
used in the mirror and phase sections, can be extracted.    This is done by plotting the differential efficiency of the 
active/passive device as a function of passive region length.  The tuning and EAM region modal loss was computed to be 
5.1 cm-1 and 8.0 cm-1, respectively. 

 
                       

3.7. Carrier Induced Tuning  
 In order to cover the full tuning range in our SGDBR design, the front mirror must continuously tune 7 nm by a carrier-
induced change in refractive index. A more detailed description of the theory behind SGDBR tuning is given in [9]. The 
tuning of a 7 quantum well sample was measured by examining the below threshold spectra as a function of bias. The 
results of this measurement are shown in Fig. 16, where we have demonstrated over 7 nm of continuous tuning, which 
translates to a modal group index change of 1.5%.  This is sufficient to demonstrate the full tuning range of the SGDBR 
device.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Wavelength shift as a function of current density 
 

3.8. Buried hetero-structure SGDBR laser 
The SGDBRs, incorporating a centered quantum well active region, and fabricated using QWI to render three band-

edges, exhibit low threshold current and high output power. Operating in continuous-wave mode, the power out versus 
applied bias was measured for a 7 quantum well SGDBR. As shown in Fig. 17, the SGDBR produces more than 20 mW 
of output power with a 100 mA bias on the gain section.  The threshold current was measured to be 10.4 mA, with a 



slope efficiency of 25%. This low threshold current is made possible by the high modal gain achievable using the 
centered quantum well design.   
 

                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17.  untuned CW SGDBR LIV Characteristics 

 

3.9. EAM Extinction and Bandwidth 
In this section we report the data obtained from the ten quantum well active region design. The EAM bandgap was 

placed at 1495 nm using the previously described process, and is shown in the photoluminescence curve in Fig. 45. The 
length of the EAM is 175 microns.  

  

 
                       Figure 18.  DC extinction for 10QW design                                              Figure 19. QWI EAM  3dB Bandwidth                                     

 
 

The DC extinction was measured for three wavelengths over the tuning band. Approximately 20 dB of extinction was 
observed at –6 volts. This data is illustrated in Fig. 18.  The RF bandwidth was characterized using a light-wave 
impedance analyzer. As shown in Fig. 19, the 3dB bandwidth was measured to be 8.5 GHz at 1553 nm and a DC bias of 
–4 volts. 



3.10. Conclusions 
We have demonstrated a buried hetero-structure based SGDBR with integrated EAM using quantum well intermixing.  
This is a promising technology to tailor the absorption properties in various sections in photonic integrated circuits.  In 
the case of the SGDBR-EAM device, we have demonstrated 3 different band-edges with the potential for many more in 
devices that may require them.  
 

4.   Other Integration Possibilities 

4.1. Wavelength Converters 
As dynamically configured networks emerge, devices that can convert one WDM wavelength to another become in 
demand[11-14].  One approach of fabricating a tunable wavelength converter involves the integration of a SGDBR and 
detector along with biasing circuitry (OEIC PD-SGDBR).  Alternatively, by integrating a SGDBR with a Mach-Zehnder 
with SOAs in each branch, purely optical wavelength conversion can be performed.  This is achieved by the use of 
cross-phase modulation where the change in intensity of light from the input effectively changes the index in one branch 
of the all-active Mach-Zehnder interferometer which results in a change in the output intensity.  In each case, 
wavelength conversion can be performed using only DC biases so off-chip RF packaging is not necessary.   

4.2. Biosensors 
Heterodyned signals from two lasers provide a very sensitive detection scheme.   One approach of realizing a biosensor  
involves the integration of two SGDBRs with an MMI combiner and detector[22].  One laser is designed in which part 
of the dielectric is removed, allowing a perturbation of the modal index in this laser when a liquid or biomaterial is 
applied to the surface.  By measuring the beat frequency between the two lasers, one can detect minute changes in index.  
By tuning the lasers over a wide range, spectral signatures of different materials can be assessed.  No coupling of light 
on and off chip is necessary for operation simplifying the packaging greatly. 
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