
Accurate vectorial finite element mode
solver for magneto-optic and anisotropic

waveguides

Paolo Pintus1,2,∗
1Scuola Sant’Anna, via Moruzzi 1, 56124 Pisa, Italy

2CNIT Photonic Networks National Laboratory, via Moruzzi 1, 56124 Pisa, Italy
∗p.pintus@sssup.it

Abstract: In this work, a dielectric waveguide mode solver is presented
considering a general nonreciprocal permittivity tensor. The proposed
method allows us to investigate important cases of practical interest in the
field of integrated optics, such as magneto-optical isolators and anisotropic
waveguides. Unlike the earlier developed mode solver, our approach allows
for the precise computation of both forward and backward propagating
modes in the nonreciprocal case, ensuring high accuracy and computational
efficiency. As a result, the nonreciprocal loss/phase shift can be directly
computed, avoiding the use of the perturbation method. To compute the
electromagnetic modes, the Rayleigh-Ritz functional is derived for the
non-self adjoint case, it is discretized using the node-based finite element
method and the penalty function is added to remove the spurious solutions.
The resulting quadratic eigenvalue problem is linearized and solved in terms
of the propagation constant for a given frequency (i.e., γ−formulation).
The main benefits of this formulation are that it avoids the time-consuming
iterations and preserves the matrix sparsity. Finally, the method is used to
study two examples of integrated optical isolators based on nonreciprocal
phase shift and nonreciprocal loss effect, respectively. The developed
method is then compared with the perturbation approach and its simplified
formulation based on semivectorial approximation.
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53. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with
polarization-independent nonreciprocal phase-shift,” J. Lightwave Technol. 19, 214–221 (2001).

54. S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveg-
uides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45, 882–888 (1974).
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1. Introduction

Dielectric waveguides are fundamental components of optoelectronic and microwave devices.
They have been extensively studied in the past and different kinds of materials have been con-
sidered. To perform the waveguide modal analysis, several numerical methods are commonly
used to compute the electromagnetic modes such as the finite element method (FEM) [1], the
finite difference method (FDM) [2], the method of lines (MoL) [3], and the film mode matching
(FMM) [4]. Due to the possibility of using adaptive meshing, FEM shows several advantages. It
usually provides a better approximation and requires less memory to store the stiffness matrix
with respect to FDM, while it is more appropriate than MoL and FMM for modal analysis of
graded index waveguides, such as ion-implanted waveguides [5], and in general for the analysis
of waveguides with complex cross-section geometry and refractive index profiles [6]. In addi-
tion, it is the most suited to solve deformation and stress problems in solids, like for the case
of stress-induced effects in optical waveguides (e.g., silicon waveguides on silicon-on-insulator
platform [7]).

In the finite element analysis, the solution can be numerically computed as a linear com-
bination of basis functions which, in electromagnetism, are usually of two kinds: node ele-
ments (also called Lagrangian elements) [1, 8–14] and edge elements (also called Nédélec ele-
ments) [1,8,15–19]. The use of the edge elements shows mainly three important benefits: i) the
spurious solutions can be effectively removed in several electromagnetic problem formulations,
ii) the boundary conditions at material interface and conducting surface can be easily imposed,
iii) there are no difficulties in treating conducting and dielectric edges and corners related to
the field singularities [1,20]. On the other hand, the node elements are more efficient as regards
to the storage requirements and the number of floating point operations (FLOPs). In addition,
the solutions computed using node elements provide higher accuracy when extremely flat or
elongated elements are used in the mesh [20]. It is worth noting that in order to completely get
rid of any spurious solutions introduced by the node elements within the range of interest of the
guided modes, the penalty function can be added to the functional [8, 21].

In this work, the node elements have been used, since we do not consider waveguides with
field singularities (e.g., by using magnetic-field formulation) and assume a zero-field condition
on the border. However, the method can be implemented also with edge elements. The mode
solver has been developed for straight waveguides, as the one shown in Fig. 1 where the cross-
section is in the xy-plane and the light propagates only along the z-direction.

Using Cartesian coordinate system, we have considered the following relative permittivity
tensor

εr =

⎛
⎝

εxx εxy −εxz

εxy εyy εyz

εxz −εyz εzz

⎞
⎠ , (1)

where the diagonal blocks are symmetric matrices, while the off-diagonal blocks are anti-
symmetric ones. All the matrix entries are complex. This tensor generalizes the one presented
by Konrad [9], permitting to consider also lossy material. In addition, it includes the case
presented by Lu and Fernandez [22] and allows us to investigate optical-isolators based on
magneto-optical materials and anisotropic waveguides.
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Fig. 1. Cross section of a uniform waveguide loaded with inhomogeneity.

For the sake of clarity, let us consider the case of a magneto-optic garnet. Its permittivity
tensor can be written as

εr =

⎛
⎝

εxx 0 0
0 εyy 0
0 0 εzz

⎞
⎠+K

⎛
⎝

0 Mz −My

−Mz 0 Mx

My −Mx 0

⎞
⎠ , (2)

where Mx, My and Mz are the magnetization of the garnet and K is a complex parameter which
depends on the material [23, 24]. Note that when KMx or KMy are not zero, the forward and
backward mode propagation constants have different values. More specifically, when KMx or
KMy are purely imaginary numbers, the forward and backward modes differ only in the phase
constant (i.e., the imaginary part of the propagation constant) and a nonreciprocal phase shift
effect (NRPS) arises. By exploiting this effect, optical isolators have been designed using Mach-
Zehnder Interferometer (MZI) configuration in order to generate constructive interference for
forward light and destructive interference for backward light [25,26]. On the other hand, when
the real part of KMx or KMy is not zero, also the propagation loss with respect to the two direc-
tions is different. Optical isolating function can be achieved combining the nonreciprocal loss
(NRL) with the gain of an optical amplifier, which compensates for the loss of the forwarding
wave, whereas keeps a large loss for the reverse direction [27].

While Mx and My are responsible for NRPS and NRL of the transverse magnetic (TM) and
transverse electric (TE) modes, respectively, Mz gives rise to TE-TM mode coupling. In inte-
grated optics Mz is usually negligible for several applications and the magnetization vector is all
in the xy-plane. As a result, the permittivity tensor of Eq. (2) has the form described by Eq. (1).

Considering the previous hypothesis, the augmented Rayleight-Ritz functional with the
penalty function has been derived. By using the node elements, we have computed the eigen-
value problem as a function of the angular frequency ω and propagation constant γ . The γ-
formulation, where the frequency is provided as the input parameter and the propagation con-
stant is the output eigenvalue, has been explicitly derived. This formulation avoids the time-
consuming iterations necessary to evaluate the propagation constant at a given frequency [8].

By exploring two examples of optical isolators based on magneto-optical waveguides for
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silicon compatible platform, we show how the shift between forward and backward propagation
constants can be directly computed instead of using the pertubation theory [28].

2. Mathematical model

2.1. Differential electromagnetic problem

In a linear, instantaneous and time invariant medium, the magnetic and electric fields can be
written as a linear combination of harmonic waves

H(r, t) = H(r)e jωt , E(r, t) = E(r)e jωt , (3)

where t is the time and r is the position. By replacing the new expressions for the fields in
Maxwell’s equations, and combining them with the constitutive relations, we have

∇ ·μ0μr(r)H(r) = 0, (4a)

∇ · ε0εr(r)E(r) = ρ(r), (4b)

∇×E(r) =− jωμ0μr(r)H(r), (4c)

∇×H(r) = jωε0εr(r)E(r)+J(r), (4d)

where J and ρ are the electric current and charge density, respectively, the constants ε0 and μ0

are the electric permittivity and the magnetic permeability in the vacuum, while the tensors εr

and μr are the relative electric permittivity and the relative magnetic permeability of the mate-
rials. In addition, to determine the solution of the electromagnetic problem, a set of boundary
conditions associated with the domain must be fixed. Here, we refer to them with B(E,H).

By computing E(r) from (4d) and replacing it into (4c), the result is a differential problem
for H(r) ⎧⎨

⎩
∇× [

ε−1
r ∇×H

]−
(ω

c

)2
μrH = ∇× ε−1

r J, in V,

B(H) = 0, on S,
(5)

where V is the domain and S is the boundary. In Eq. (5), we used the relation c = 1/
√ε0μ0 for

the speed of light in the vacuum and we omit the explicit dependence on the space variable r
for the sake of simplicity. In a similar way, it is possible to derive an equivalent problem for E.

2.2. Variational formulation: non-self-adjoint problem

As it is known from the variational methods, it is possible to construct a functional linked to the
differential problem such as the stationary point of that functional is the exact solution of the
differential problem [1]. In our case, the relative permittivity tensor defined in eq. (1) is neither
symmetric (i.e., εr = εT

r ) nor hermitian (i.e., εr = ε†
r ). As a result, the differential operator

∇× [
ε−1

r (r)∇×·] is not symmetric or self-adjoint [29]. To compute the related functional an
auxiliary problem is introduced, which is also called adjoint problem [30]. Considering the
original problem (5), its adjoint problem is

⎧⎨
⎩

∇×
[
(εa

r )
−1 ∇×Ha

]
−
(ω

c

)2
μa

r H = ∇× (εa
r )

−1Ja, in V,

Ba(Ha) = 0, on S,
(6)

where Ha is the adjoint magnetic fields, Ja is the adjoint source distribution, and Ba(Ha) = 0
are the adjoint boundary conditions. Note that Ja and Ba(Ha) = 0 are chosen according to the
direct problem, while the relative tensors εa

r and μa
r are equal to εT

r and μT
r when we consider

the real inner product, or ε†
r and μ†

r in case we use the complex inner product [30].
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By considering the perfect electric conductor (PEC) or perfect magnetic conductor (PMC)
boundary conditions

(∇×H)× in = 0, PEC, (7a)

H× in = 0, PMC, (7b)

where in is the normal unit vector with respect to the surface. It can be proved that the solutions
of the differential equation (5) is the stationary point of the functional

F(H,Ha) =
1
ε0

∫∫∫

V

[
∇×Ha · ε−1

r ∇×H
]

dV −ω2μ0

∫∫∫

V
μrH ·Ha dV+

− 1
ε0

∫∫∫

V
∇× ε−1

r J ·Ha dV − 1
ε0

∫∫∫

V
H ·∇× (

εT
r

)−1
Ja dV, (8)

where the real inner product has been considered. If the complex inner product is used, the
adjoint field (Ha) and current (Ja) must be replaced by their complex conjugate values (Ha∗

and Ja∗), while ε†
r and μ†

r take the place of εT
r and μT

r in the previous formula [30]. A similar
formulation can be derived for E and the electric adjoint field Ea.

2.3. Waveguide mode problem

In our work, we consider that the materials are non-magnetic (μr = 1). As a result, the nor-
mal and tangent component of H are continuous across any boundary separating two different
media. For this reason, the formulation in term of the magnetic field is preferred. Moreover, be-
cause a mode is a transverse electromagnetic wave which propagates in the waveguide without
sources, we set J = 0 and Ja = 0.

By considering an infinite straight waveguide, like the one shown in Fig. 1, the geometry is
invariant along the z-axis and the electric and magnetic fields can be written as

E = E(x,y)e jωt−γz, H = H(x,y)e jωt−γz, (9)

where γ = jβ +α is the propagation constant, β the phase constant and α the attenuation.
Similarly, the adjoint fields are

Ea = Ea(x,y)e jωt−γaz, Ha = Ha(x,y)e jωt−γaz, (10)

where γa =−γ in the real inner product case, while γa =−γ∗ when the complex inner product
is used. Indeed, in order to have a useful form for the functional and to get an expression
independent of z, the exponential (z-dependent) terms of the original and adjoint vector fields
must cancel out [30–32]. To compute the functional in eq. (8), we need to find the relationship
between the direct and the adjoint fields. Equation (4c) and (4d) for the direct field are

⎛
⎜⎝

0 γ ∂
∂y

−γ 0 − ∂
∂x

− ∂
∂y

∂
∂x 0

⎞
⎟⎠
⎛
⎝

Ex

Ey

Ez

⎞
⎠=− jωμ0

⎛
⎝

Hx

Hy

Hz

⎞
⎠ , (11a)

⎛
⎜⎝

0 γ ∂
∂y

−γ 0 − ∂
∂x

− ∂
∂y

∂
∂x 0

⎞
⎟⎠
⎛
⎝

Hx

Hy

Hz

⎞
⎠= jωε0

⎛
⎝

εxx εxy −εxz

εxy εyy εyz

εxz −εyz εzz

⎞
⎠
⎛
⎝

Ex

Ey

Ez

⎞
⎠ , (11b)

where for the curl operator we use the matrix expression and the partial derivative with respect
to z has been replaced by −γ . Adopting the real inner product (i.e., γa = −γ), the adjoint
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problem is
⎛
⎜⎝

0 −γ ∂
∂y

γ 0 − ∂
∂x

− ∂
∂y

∂
∂x 0

⎞
⎟⎠
⎛
⎝

Ea
x

Ea
y

Ea
z

⎞
⎠=− jωμ0

⎛
⎝

Ha
x

Ha
y

Ha
z

⎞
⎠ , (12a)

⎛
⎜⎝

0 −γ ∂
∂y

γ 0 − ∂
∂x

− ∂
∂y

∂
∂x 0

⎞
⎟⎠
⎛
⎝

Ha
x

Ha
y

Ha
z

⎞
⎠= jωε0

⎛
⎝

εxx εxy εxz

εxy εyy −εyz

−εxz εyz εzz

⎞
⎠
⎛
⎝

Ea
x

Ea
y

Ea
z

⎞
⎠ . (12b)

The matrix blocks which have been highlighted in the adjoint problem (12) have opposite sign
with respect to the ones in the original problem (11). Using the following relations

⎛
⎝

Ea
x

Ea
y

Ea
z

⎞
⎠=

⎛
⎝
−Ex

−Ey

Ez

⎞
⎠ ,

⎛
⎝

Ha
x

Ha
y

Ha
z

⎞
⎠=

⎛
⎝

Hx

Hy

−Hz

⎞
⎠ , (13)

in the equation system (12) we obtain the system (11). The previous relations allow us to link
the components of the original fields with those of the adjoint ones. At this point, it is easy to
compute the Rayleigh-Ritz functional (8). The relationship (13) is also verified when both εr

and μr have the form of Eq. (1), which is the case of magnetized ferrites [33]. In that case, the
variational formulation with respect to E is preferred.

Let us note that from Eq. (8), the solution of the problem H and Ha belongs to the Sobolev
space H(curl).

2.4. Interpolating function

Because the electromagnetic problem for a straight waveguide is independent of the direction
of propagation (z-axis), only the transverse cross-section is discretized. Considering a generic
mesh element e, the interpolating function on it can be written as

He
n(x,y) =

m

∑
i=1

[
he

xiN
e
i (x,y)ix +he

yiN
e
i (x,y)iy +he

ziN
e
i (x,y)iz

]
e jωt−γz, (14)

where m is the number of nodes in the single element, Ne
i (x,y) is the basis function for the node

i = 1, . . . ,m, and (he
xi,h

e
yi,h

e
zi) are the values of He

n at the interpolation node i. The approximate
field Hn in the whole cross-section is then

H(x,y)� Hn(x,y) =
N

∑
e=1

He
n(x,y), (15)

where N is the total number of mesh elements. In our work, we have considered a triangular
mesh and quadratic interpolating function (i.e., m = 6).

As we already mentioned, one of the drawbacks associated with the node element approach
is the appearance of spurious or nonphysical solutions. In fact, when the magnetic field H solves
the curl-curl equation (5), it also solves the constraint

∇ ·μ0H(r) = 0. (16)

When we are looking for an approximate solution, this is not always true and some non-feasible
solutions are introduced. To force the numerical solutions to satisfy all equations (5), the con-
straint should be taken into account using the augmented functional F̃(H,Ha)

F̃(H,Ha) = F(H,Ha)+
αp

ε0

∫∫∫

V
∇ ·Ha ∇ ·HdV. (17)
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The added term is called the penalty function and has been introduced by Rahman and
Davies [21]. Equation (17) implies that H,Ha belong to the Sobolev space H(curl)∩H(div).
The constant αp is a free parameter and it is usually chosen equal to 1.

2.5. Discretized functional

Using the approximation of the previous paragraph and introducing the tensor p = ε−1
0 ε−1

r , we
have calculated the functional (17). Note that the integral along the z-axis is neglected because
the argument is independent of this variable. To make the computation clearer, let us consider
the integrals on a generic element e with surface Se. In addition, we assume p is constant in
each element. At this point, let us introduce a more compact matrix notation by defining the
vectors

he
x =

⎛
⎜⎜⎜⎝

he
x1

he
x2
...

he
xm

⎞
⎟⎟⎟⎠ , he

y =

⎛
⎜⎜⎜⎝

he
y1

he
y2
...

he
ym

⎞
⎟⎟⎟⎠ , he

z =

⎛
⎜⎜⎜⎝

he
z1

he
z2
...

he
zm

⎞
⎟⎟⎟⎠ , (18)

and the matrices Re, Je, Ne, De, Ee, and Ze with elements

re
i j =

∫∫

Se
Ne

i Ne
j dxdy, de

i j =
∫∫

Se

∂Ne
i

∂y

∂Ne
j

∂y
dxdy,

je
i j =

∫∫

Se
Ne

i

∂Ne
j

∂y
dxdy, ee

i j =
∫∫

Se

∂Ne
i

∂x

∂Ne
j

∂x
dxdy,

ne
i j =

∫∫

Se
Ne

i

∂Ne
j

∂x
dxdy, ze

i j =
∫∫

Se

∂Ne
i

∂y

∂Ne
j

∂x
dxdy, (19)

where the capital letter is used for the matrix and its corresponding lower case letter indicates
its generic element [9]. The matrix entry with index (i, j) depends only on the basis functions
Ne

i (x,y) and Ne
j (x,y) on the element e. Note that the matrices Re, De, and Ee are symmetric.

From Eq. (17), we can see that the functional F̃(H,Ha) is the sum of three integrals. By
computing the first one, we obtain

∫∫

Se
[∇×Ha ·p∇×H] dxdy =

⎛
⎝

he
x

he
y

he
z

⎞
⎠

T⎡
⎣γ2

⎛
⎝
−pyyRe pyxRe 0
pxyRe −pxxRe 0

0 0 0

⎞
⎠+

+ γ

⎛
⎝

pzyJeT − pyzJe pyzNe − pzxJeT pyxJe − pyyNe

pxzJe − pzyNeT pzxNeT − pxzNe pxyNe − pxxJe

pxyJeT − pyyNeT pyxNeT − pxxJeT 0

⎞
⎠

+

⎛
⎝

pzzDe −pzzZe pzyZe − pzxDe

−pzzZeT pzzEe pzxZeT − pzyEe

pxzDe − pyzZeT pyzEe − pxzZe Le
zz

⎞
⎠
⎤
⎦
⎛
⎝

he
x

he
y

he
z

⎞
⎠ , (20)

where Lzz = pxyZe + pyxZeT − pxxDe − pyyEe.
Similarly, we computed the second term

∫∫

Se
Ha ·Hdxdy =

⎛
⎝

he
x

he
y

he
z

⎞
⎠

T⎛
⎝

Re 0 0
0 Re 0
0 0 −Re

⎞
⎠
⎛
⎝

he
x

he
y

he
z

⎞
⎠ , (21)
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while the last integral becomes
∫∫

Se
∇ ·Ha ∇ ·Hdxdy =

⎛
⎝

he
x

he
y

he
z

⎞
⎠

T⎡
⎣γ2

⎛
⎝

0 0 0
0 0 0
0 0 Re

⎞
⎠− γ

⎛
⎝

0 0 NeT

0 0 JeT

Ne Je 0

⎞
⎠+

⎛
⎝

Ee ZeT 0
Ze De 0
0 0 0

⎞
⎠
⎤
⎦
⎛
⎝

he
x

he
y

he
z

⎞
⎠ . (22)

Considering the previous results, the augmented functional over the element e is approximated
by the quadratic form

F̃(H,Ha)
∣∣∣
e
≈
⎛
⎝

he
x

he
y

he
z

⎞
⎠

T
[
γ2Me + γCe +Ke −ω2μ0T e]

⎛
⎝

he
x

he
y

he
z

⎞
⎠ . (23)

where we have introduced the 18×18 matrices Me, Ce, Ke and T e. Note that Me, Ce and T e are
the sum of the matrices multiplied by γ2, the sum of the matrices multiplied by γ , and the sum
of the matrices multiplied by ω2, respectively, while the sum of the remaining ones is Ke.

At this point we move from the local computation performed on the generic element e to the
global one that defines the matrices associated to the discretized problem. The total functional
is the sum of the contributions of all of the elements

F̃(H,Ha) =
N

∑
e=1

F̃(H,Ha)
∣∣∣
e
. (24)

For this purpose, let us extend the previous notation defining three vectors with unknown coef-
ficients

hx =

⎛
⎜⎜⎜⎝

hx1

hx2
...

hxN̂

⎞
⎟⎟⎟⎠ , hy =

⎛
⎜⎜⎜⎝

hy1

hy2
...

hyN̂

⎞
⎟⎟⎟⎠ , hz =

⎛
⎜⎜⎜⎝

hz1

hz2
...

hzN̂

⎞
⎟⎟⎟⎠ , (25)

where N̂ is the number of the mesh nodes. Therefore, the discrete functional computed in the
cross-section is

F̃(H,Ha)≈
⎛
⎝

hx

hy

hz

⎞
⎠

T
[
γ2M+ γC+K −ω2μ0T

]
⎛
⎝

hx

hy

hz

⎞
⎠ , (26)

where M, C, K and T are 3N̂ × 3N̂ matrices. Those matrices can be easily computed “assem-
bling” all of the matrices Me, Ce, Ke, and T e for e = 1, . . . ,N. It is worth noting that the matrix
entry with index (i, j) is non-zero only when the basis functions are non-zero at least on one
shared element. Due to this fact, the matrices in (26) are sparse, with very few non-zero ele-
ments.

2.6. Eigenvalue problems

Since the solution of the differential problem (5) is the stationary point of F̃(H,Ha), we derive
equation (26) with respect to the unknown vector and obtain

[
γ2M+ γC+K −ω2μ0T

]
h = 0, (27)
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where h =
(
hT

x hT
y hT

z

)T
. According to the known/unknown parameters, an ω-formulation or a

γ-formulation can be derived [8]. In the first case, the propagation constant is provided as an
input of the problem and the previous equation becomes

[
γ2M+ γC+K

]
h = ω2μ0Th, (28)

where (ω,h) is the eigenvalue-eigenvector pair of the generalized eigenvalue problem (GEP)
in Eq. (28). Vice versa, fixing the angular frequency ω , the Eq. (27) is a quadratic eigenvalue
problem (QEP) [34, 35], where h is the eigenvector and γ its eigenvalue.

The number of rows/columns of the matrices in Eq. (28) is three times the number of the
mesh nodes N̂. In the literature, different approaches have been derived in order to reduce the
memory and computational efforts, e.g. the formulation in terms of the transverse magnetic
field components. However, to the best of our knowledge, this formulation has been obtained
only in the case of εxz = εyz = 0 [1, 8, 22, 36, 37], while its derivation is not straightforward in
the more general case. Moreover, the full vectorial formulation preserves the matrix sparsity
and provides a higher accuracy on the computation of the longitudinal component Hz, which is
in fact directly evaluated [8]. It is worth noting that an accurate value of all field components
is important especially in silicon photonics, where the concepts of pure TE and TM modes are
undermined due to the high index contrast.

An easy way to solve the QEP consists in transforming it into an equivalent generalized
eigenvalue problem [34]. By introducing the vector

u = γh, (29)

we obtain (
0 I

−K +ω2μ0T −C

)(
h
u

)
= γ

(
I 0
0 M

)(
h
u

)
. (30)

As a result, both the ω-formulation (Eq. (28)) and the γ-formulation (Eq. (30)) have been trans-
formed into a generalized eigenvalue problem

Av = σBv. (31)

Note that the size of the computational problem in the case of fixed optical frequency is doubled
compared to the formulation where the propagation constant is set.

The eigenvector-eigenvalue pairs, which are the numerical solutions of the electromagnetic
problem, can be found using Krylov methods. Such methods allow us to compute few eigen-
values of large sparse matrices, e.g. the eigenvalues which have the largest or the smallest
magnitude. If we roughly know the eigenvalues we are interested in, we can shift the spec-
trum close to them and then apply the method, looking for the smallest magnitude eigenvalues.
Called such approximation σ0, we subtract σ0Bv from either term in Eq. (31)

Av−σ0Bv = σBv−σ0Bv. (32)

Collecting the common terms, we obtain

(A−σ0B)v = (σ −σ0)Bv. (33)

The generalized eigenvalue problems (31) and (33) have the same eigenvectors, but shifted
eigenvalues

(v,σ) and (v,σ −σ0) . (34)
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In the ω−formulation, the spectrum is shifted close to the angular frequency we are consider-
ing. In the γ−formulation, β is unknown, but its value for the propagating modes must respect
the inequality

nmink0 ≤ β ≤ nmaxk0, (35)

where nmin and nmax are the minimum and maximum refractive indices in the problem under
investigation, and k0 is the wavenumber in the vacuum (k0 = 2π/λ ). In this case we shift the
spectrum close to σ0 = nmaxk0 when we want to compute the forward propagating modes,
while we move the spectrum close to σ0 = −nmaxk0 when we are looking for the backward
propagating modes. From Eq. (35) it is useful to define the effective index as ne f f = β/k0

which can be easily compared with the refractive index of the waveguide.
To improve the numerical stability of the method, the QEP is properly rescaled [38, 39]. By

introducing the 2-norm of the following matrices

m2 = ‖M‖2 , c2 = ‖C‖2 , s2 =
∥∥K −ω2μ0T

∥∥
2 , (36)

we define

ξ =

√
s2

m2
, δ =

2
s2 + c2ξ

. (37)

The eigenvalues and the matrices of the scaled eigenvalue problem are

γ̃ =
γ
ξ
, M̃ = ξ 2δ M, C̃ = ξ δ C, K̃ = δ K, T̃ = δ T. (38)

2.7. Lossy case: fully complex formulation

The described mode solver formulation is fully complex and the propagation loss can be directly
computed. In order to evaluate the radiation loss of the waveguide, the perfectly matched layer
method (PML) can be used [40], and the parameters can be easily estimated using the method
presented in [14, 41].

2.8. Lossless case: real formulation

Ordinarily, the field E and H have complex components. However, the problem can be simpli-
fied considering a particular case for the permittivity tensor

εr =

⎛
⎝

εxx εxy − jεxz

εxy εyy jεyz

jεxz − jεyz εzz

⎞
⎠ , (39)

where εi j are real for i, j = x,y,z. In this case, which belongs to the more general case described
before, the tensor is self-adjoint (or hermitian) and the waveguide is lossless (i.e., α = 0). The
problem is still quite general and the lossless magneto-optic and anisotropic materials can be
described by a simplified formulation. Writing the magnetic and electric fields as

E = [Ex(x,y)ix +Ey(x,y)iy + jEz(x,y)iz]e jωt− jβ z, (40a)

H = [Hx(x,y)ix +Hy(x,y)iy + jHz(x,y)iz]e jωt− jβ z, (40b)

makes the problem (17) fully real [1, 9] and this halves the memory demand.
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3. Numerical results

In this section, we are presenting some numerical results obtained by the described mode solver.
The method has been fully programmed in MATLAB. The integrands in Eq.s (19) are poly-
nomials over triangular elements and can be computed exactly [9]. The routine eigs has
been used to numerically solve the eigenvalue problems. It provides the reverse communi-
cation required by the Fortran library ARPACK [42,43]. ARPACK is a collection of Fortran77
subroutines designed to solve large scale eigenvalue problems. This software is based upon
an algorithmic variant of the Arnoldi process called the implicitly restarted Arnoldi method
(IRAM) [44,45]. In the ω−formulation, because both of the matrices in the generalized eigen-
value problem are symmetric, the IRAM is replaced by the implicitly restarted Lanczos method
(IRLM) [43].

3.1. Nonreciprocal phase shift in lossless magneto-optical waveguides

Here, we present the modal analysis results of a nonreciprocal waveguide that has been used to
perform silicon-based optical isolator for the TM mode using both Mach-Zender interferome-
ter [26, 46, 47] and micro-ring resonator configurations [48, 49]. In the former photonic circuit,
the device is designed to generate constructive interference for the forward light and destruc-
tive interference for the backward light, while in the latter the different propagation constant
for the clockwise (CW) and the counterclockwise (CCW) modes results in a different resonant
wavelength for the two directions.

The waveguide cross-section is shown in Fig. 2. The silicon waveguide is fabricated on a
silicon-on-insulator (SOI) wafer, having refractive index nSi = 3.45 and nSiO2 = 1.46, respec-
tively. In order to achieve NRPS, the top-layer of the waveguide is bonded with a cerium-
substituted yttrium iron garnet (Ce:YIG) (nCe:Y IG = 2.22, [50]) grown on a (Ca,Mg,Zr)-
substituted gadolinium gallium garnet (SGGG), (nSGGG = 1.97).

Fig. 2. Magneto-optic waveguide cross section.

The Ce:YIG is a magneto-optic (MO) garnet used in silicon photonics to perform optical iso-
lators and circulators. By applying a static magnetic field along the horizontal axis (x-direction
in Fig. 2), the Ce:YIG permittivity tensor results

εr =

⎛
⎝

εxx 0 0
0 εyy jεyz

0 − jεyz εzz

⎞
⎠ , (41)

where εxx = εyy = εzz = n2
Ce:Y IG, and the off-diagonal element εyz is responsible for the MO
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effect. The latter term is related to the Faraday rotation constant θF by

εyz =
2nCe:Y IGθF

k0
. (42)

For calculation, we assume θF = 4000o/cm at λ = 1550nm [48–50], and then εyz = 7.65 ·10−3.
However, in high quality Ce:YIG crystal, a Faraday-rotation coefficient as large as 4500o/cm
can be measured [51].

By solving the curl-curl equation for the magnetic field, as described in section 2, we have
computed the three components of the magnetic field and the phase constant, for the forward
and backward propagating waves, respectively. The NRPS can be directly computed as

Δβ =
∣∣β+

∣∣− ∣∣β−∣∣ , (43)

where + and − refer to the forward and backward propagating directions, respectively. TE and
TM forward propagating modes are shown in Fig. 3, where we assumed a 600nm× 215nm
silicon waveguide cross-section, with a 380nm thick Ce:YIG layer above it. Those values max-
imize the NRPS for the TM mode, as it is explained in the following.
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Fig. 3. Magnetic field H for the TE-mode (first row) and TM-mode (second row) at
1550nm. The fields have been normalized in term of power and the profiles are shown
in H/μm.

Because the value of the off-diagonal terms in the permittivity tensor are usually small (e.g.,
εyz/n2

Ce:Y IG � 0.015), it is very important to optimize the waveguide cross-section in order to
maximize Δβ and to achieve the highest isolation. In Fig. 4 we report the NRPS computed for
different silicon and Ce:YIG layer thicknesses (hMO and hSi in Fig. 2), while we consider a
600nm wide silicon waveguide in order to guarantee the single mode regime (wSi in Fig. 2).

Note that NRPS is maximized when the maximum of |Hx|2 is located close to the boundary of
the two materials, similarly to what happens using garnet double layers with opposite Faraday
rotation values [52]. The same calculation for the TE mode shows a negligible split between
the phase constants of the propagating and counterpropagating modes.
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Fig. 4. NRPS for the TM mode at 1550nm.

Considering hMO = 380nm, hSi = 215nm and wSi = 600nm, we have performed the modal
analysis for λ within the range: [500nm,3000nm]. Figure 5 shows the dispersion curves of
the first ten modes with respect to the wavelength. As it is known, the higher the frequency
(the lower the wavelength), the larger the number of modes that are confined in the structure.
Moreover, the modes with an effective index higher than the refractive index of the cladding
(1.97 for SGGG) are confined in the silicon-waveguide core and can propagate, while the ones
which have ne f f < 1.97 are below cut-off and cannot propagate.
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Fig. 5. Dispersion curves (eigenvalue spectrum) as a function of the wavelength (λ =
2πc/ω) for the waveguide under examination.

3.2. Finite element method vs. perturbation method

In the literature, the most used method for investigating the nonreciprocal effect is the pertur-
bation method [28, 47, 52–55]. Such a method can be applied when the off-diagonal elements
of the permittivity tensor are rather small, which in our case means εyz 	 εxx,εyy,εzz. When
this happens, εyz can be assumed as a small perturbation on the permittivity tensor and the shift
between forward and backward propagation constants can be estimated by applying the pertur-
bation theory [28]. Using this approach, the electromagnetic fields are computed considering
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diagonal permittivity tensor and the phase constant difference is estimated like

Δβpm =
2ωε0

∫∫
S E∗ΔεEdxdy∫∫

S [E
∗ ×H+E×H∗] · iz dxdy

, (44)

where Δε is a matrix which contains all the off-diagonal entries.
The previous equation can be further simplified using the semivectorial approximation (i.e.,

Ex = 0 and Ez = j∂yEy/β for the TM mode and Ey = 0 and Ez = j∂xEx/β for the TE mode) [47,
53, 55]. Considering our example (TM mode), Eq. (44) can be rewritten as follows

Δβsv =
2β
ωε0

∫∫
S εyz

∂
∂y

|Hx|2
n4 dxdy

∫∫
S [E×H∗+E∗ ×H] · iz dxdy

, (45)

where n is the refractive index.
To conclude our analysis, we compare the NRPS computed with our model with the ones

calculated using Eq. (44) and Eq. (45). In Fig. 6(a), the percentage difference between Δβ and
Δβpm is reported for different values of layer thickness. From that figure, we can easily see that
the difference between the two methods is less than 3%. Similarly, a relative difference larger
than 10% is computed between Δβ and Δβsv, as shown in Fig. 6(b). Such a big difference can
be explained considering that the Ex component is neglected for the TM mode in Eq. (45).
Indeed, in a high index contrast system, like silicon-photonics, the concepts of pure TE and TM
modes is undermined and all three field components become non-negligible and comparable in
magnitude.
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Fig. 6. Relative change of Δβpm 6(a) and Δβsv 6(b) with respect to the NRPS computed
directly.

Finally, in Fig. 7 we compare the three methods considering hMO = 500nm and varying the
silicon thickness only.

3.3. Nonreciprocal loss in magneto-optical waveguides

Optical isolation based on nonreciprocal loss can be implemented by considering a magneto-
optic material, which provides the nonreciprocal loss, and an optical waveguide amplifier,
which compensates the forward propagation loss. Several configurations have been proposed
for both indium phosphide [56–58] and silicon photonics technologies [59].
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In the plot we compared the three methods.

In this section, we present the modal analysis of a nonreciprocal loss waveguide for hybrid
silicon photonics integrated circuit platforms. The silicon waveguide is defined on SOI wafers
by etching 400nm deep trenches into a 700nm thick silicon layer [60]. The nonreciprocal loss is
induced by a thin film of iron (Fe) as schematically shown in Fig. 8. The iron layer is separated
from the silicon waveguide by a thin titania (TiO2) layer to reduce and optimize the Fe-layer
loss. The propagation loss for the forward light can be effectively compensated by bonding an
InGaAsP multi quantum well (MQW) active layer above the silicon waveguide.

Fig. 8. NRL isolator waveguide cross section.

In our simulations, we assume a 30nm-thick layer of titania and we varied the thickness of
the iron between 25nm and 100nm. The refractive indices of the TiO2 and Fe at 1550nm are
assumed to be 2.1 and 3.17+5.27i, respectively [57]. The nonreciprocal effect can be induced
on the TE mode by applying a magnetic field along the vertical direction (i.e., the y-axis in
Fig. 8). For this case, the Fe permittivity tensor results

εr =

⎛
⎝

εxx 0 εxz

0 εyy 0
−εxz 0 εzz

⎞
⎠ , (46)

where εxx = εyy = εzz = n2
Fe, and the off-diagonal element εxz = 3.15+ 1.8i when the mag-

netization of the Fe layer is saturated [57, 61]. It is worth mentioning that, although iron is
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a ferromagnetic material at low frequency, at optical frequencies the magnetic susceptibility
ceases to have any physical meaning and its magnetic permeability has been assumed equal to
μ0 [23, 62, 63].

The results of the modal analysis are reported in Fig. 9, where the amplitude of the magnetic
field components of the TE-mode are shown.
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Fig. 9. Amplitude of the magnetic field H for the TE-mode at 1550nm. The amplitude of
the field components have been normalized in term of power and the profiles are shown in
H/μm.

In Fig. 10(a), the propagation loss for both the forward and backward modes is reported for
different values of the Fe-layer thickness. The thicker the iron layer, the larger the difference
between the loss in the two directions and, as a consequence, the higher the optical isolation.
On the other hand, a thicker Fe-film produces larger loss that needs to be compensated by a
MQW layer. With our model, we directly compute the NRL and NRPS as

Δα =
∣∣α+

∣∣− ∣∣α−∣∣ , (47a)

Δβ =
∣∣β+

∣∣− ∣∣β−∣∣ , (47b)

where the superscript ± refer to the forward and backward waves, respectively. Their values
are reported in Fig. 10(b). It is worth noting that the longer the waveguide, the larger the nonre-
ciprocal effect. As it can be seen from the figure, a 25nm-thick iron film will produce a NRL of
about −7dB/mm, while a four times thicker layer generates an isolation of almost −12dB/mm.
Those values are consistent with those reported in the literature [56, 57, 59].

(a) Propagation loss of forward and backward waves. (b) NRL and NRPS of the TE mode.

Fig. 10. Nonreciprocal effects on the TE-mode in the NRL-waveguide.

Also in this case, a compared analysis with the perturbation method is performed. Let us note
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that in the lossy case, the formula (44) must be replaced by the more general one

Δγpm = Δαpm + jΔβpm =
2ωε0

∫∫
S EaΔεEdxdy∫∫

S [E
a ×H−E×Ha] · iz dxdy

, (48)

where Ea and Ha are the adjoint fields [28]. The results of this comparison are reported in
table 1.

Table 1. Comparison between the two methods.

Fe layer NRL NRL NRPS NRPS
thickness Δα Δαpm Δβ Δβpm

(nm) (dB/mm) (dB/mm) (rad/mm) (rad/mm)

25 -6.9643 -6.9550 0.4092 0.4159
50 -9.8495 -9.7799 1.1817 1.1903
75 -10.9298 -10.8404 1.4907 1.4976
100 -11.8120 -11.7101 1.6454 1.6531

From table 1, we can observe that the results of the two methods are in good agreement. In
addition, the relative difference between the two methods is smaller than the ones computed in
the previous case. This can be understood because the layer of iron is much smaller than the
silicon waveguide and only a small percentage of the field is confined in it. This is in agreement
with the basic assumption of the perturbation method.

It is worth noting that the proposed method allows us to directly compute the NRPS and the
NRL for complex structures based on new materials characterized by higher Faraday rotation
constants like, for example, the bismuth iron garnet (BiIG) [64], in which the perturbation
method could be rather inaccurate.

4. Conclusions

We have presented a rigorous full vectorial mode solver based on the finite element method.
Such a method allows us to study a generic magneto-optic and anisotropic lossy straight waveg-
uide. After having computed the Rayleigh-Ritz functional for the non-self-adjoint case, the fi-
nite element method has been implemented using the node based second order shape functions.
Furthermore, the penalty function has been introduced to remove the spurious solutions from
the eigenvalue spectral region of interest.

Considering the discretized eigenvalue problem, the γ-formulation has been derived, avoid-
ing the time-consuming iterations necessary in previous formulations for evaluating the mode
propagation constants at a given operating frequency [8]. This formulation allows speeding up
simulations and improving the convergence of the eigenvalues at the same time. Moreover, all
the modes and the propagation constants are computed at the same time and not one after the
other as performed in the case of iterative approaches.

Concerning the magneto-optic materials the accuracy of the method has been compared with
the perturbation method, the most used technique for investigating the nonreciprocal effect,
providing satisfactory results. The mesh adaptivity of the finite element method allows us to
efficiently compute the modes of graded index waveguides, like the anisotropic ion-implanted
waveguides reported in [5], as well as the modes of high refractive index contrast slot waveg-
uides [65,66]. The described mode solver can be effectively employed also to design microring-
based optical isolators [49,67,68], where the mode of a bent waveguide with a large ring radius
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is approximated by a lateral shift of the straight waveguide mode [69, 70]. The presented ap-
proach provides then an important tool for integrated optical device modal analysis and design.
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