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Abstract

Athermal Laser Designs on Si and Heterogeneous

III-V/Si3N4 Integration

Jock Trevor Bovington

This dissertation presents each component of and a path towards heteroge-

neously integrated GaAs type III-V lasers bonded to Si3N4 passive waveguides

on silicon, targeting visible integrated photonics on silicon. A continuous-wave

Fabry-Pérot laser, tapered mode converters from III-V to Si3N4, and Si3N4 side-

wall distributed Bragg reflector elements, all made with an integrable process flow,

are demonstrated to prove this principle. The goal of this integration is to combine

electrically pumped InGaAs multiple quantum well (MQW) active material with

low-loss, spectrally wide-bandwidth waveguides to enable compact, novel photonic

integrated circuits.

An additional benefit with Si3N4 is its lower thermal drift relative to silicon.

Additionally, demonstrations of TiO2 based guides with ∼ pm/K thermal drift

are presented to explore the possibilities of athermalized waveguides on silicon.

Both TiO2 core and clad waveguides are studied, and new materials information

on amorphous sputtered TiO2 are reported. As integration with such waveguides

could open opportunities for novel athermal lasers, some passively athermal de-

xiii



signs and designs with integrated athermal wavelength references are presented

which show the merit of an integrated approach.

As much process development was required to bring all of the device demon-

strations presented in this dissertation to fruition, key process developments are

highlighted and explained in detail to assist in any similar future developments.

Finally, the vision of heterogeneous integration as an enabler for ultra-broadband

photonic integrated circuits beyond existing InP/Si photonic integrated circuits

is presented as future work.

Professor John E. Bowers

Dissertation Committee Chair
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Chapter 1

Introduction

This thesis is focused on the heterogeneous integration of the best individual

and combinations of photonic materials onto a single platform on silicon. This

is a vision shared by many at UCSB, particularly in John Bowers’ optoelectron-

ics group, and elsewhere around the world, as evidenced by the large number

of publications and conference presentations on the topic in recent years. More

recently the funding and focus has shifted toward longer wavelengths in the re-

search community for MIR applications related to molecular sensing and military

applications thanks to the intrinsic properties of Si and Ge at these longer wave-

lengths [2, 3]. Unique to this work is a focus on wavelengths shorter than the

bandgap of silicon. For this reason, the standard silicon waveguide designs no

longer work below 1.1 µm and a wider bandgap material such as silicon-nitride

(Si3N4) or titanium-dioxide (TiO2) must be used for passive circuitry. For active

1



Chapter 1. Introduction

III-V materials, GaAs based semiconductors are used to demonstrate lasers as

they are the key and in many ways most challenging of devices to integrate.

Beyond the discussion of shorter wavelength lasers on silicon, reductions in

thermal sensitivity, or athermalization are covered. Applications at all wave-

lengths are sensitive to temperature, so all of the arguments and measurements

presented for telecommunications also apply at short wavelengths and for sensing

applications. So, a broader study was made of the reduced thermal sensitivity of

TiO2 waveguides. As III-V devices are not naturally paired with Si3N4 or TiO2

waveguides, the method of integrating the two together requires integration. For

this, we propose heterogeneous integration by wafer bonding. A schematic of this

structure is shown in Fig. 1.1.

This dissertation specifically is an exploration into new possibilities of hetero-

geneous integration on silicon. Subjects explored include a path towards integra-

tion of GaAs type III-V lasers with Si3N4 planar lightwave circuits (PLCs), and

the use of TIO2, an athermalizing core or cladding material, for the purposes of

athermal passive circuitry. As athermal waveguide circuits are of particular in-

terest for passively athermalized circuits for optical communications, some tests

were conducted at telecommunication bandwidths. Both of these waveguides are

capable of higher energy densities and lower losses than silicon and are transpar-

ent to wavelengths below the silicon band gap, which is unique to this work. Prior

2
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Figure 1.1: Schematic of heterogeneous integration of III-V laser with broadband
Si3N4 or TiO2 waveguide. (artwork courtesy of Martijn Heck)

art in heterogeneous integration of III-V and Si has focused on O and C-band [4]

and some recent longer wavelength demonstrations [5].

Finally, in exploring both of the topics of III-V on silicon integration and ather-

malization together, some athermal laser designs are proposed theoretically with

the intention of reducing the amount of feedback required in a conventional laser

thermal stabilization approach. Unique to this approach, the stabilized wave-

length references are integrated rather than relying on an external wavelength

locker.
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1.1 Background

This work was completed in the context of previous successful heterogeneous

integrations which the reader should be aware of. In 2005, Hyundai Park, Alexan-

der Fang and colleagues produced the world’s first Hybrid Silicon Laser [6]. This

was a heterogeneous integration of III-V InP based gain material on to partially

processed silicon photonic circuits using die-scale 300◦C O2 plasma assisted molec-

ular wafer bonding. The term hybrid in this case is different from, but may easily

be mistaken with, prior work of photonic ”hybridization.” Prior hybridization of

pre-processed lasers with photonics circuits was commercialized by companies like

CIP Technologies (acquired by Hauwei in January 2012) and later by silicon pho-

tonics companies like Kotura (acquired by Mellanox in August 2013) and Oracle.

These approaches use pre-fabricated III-V devices typically metal-bonded to host

circuits similarly to flip-chip bonding. There is an understandable confusion that

remains to this day as Intel Corporation, the most visible supporter and developer

of III-V/Si technology, has taken on the Hybrid Silicon Laser name into it’s mar-

keting that at the time of this writing has gained a great deal of attention within

the community. To avoid confusion, this dissertation adopts the nomenclature

”heterogeneous” III-V/Si integration used by Aurrion, the company formed by

Alexander Fang and Prof. John Bowers to move the technology out of the lab
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and into the market. This refers to all technologies that bond III-V mid-process

and then use wafer-scale lithographic processes to complete the III-V fabrication.

Heterogeneous, meaning simply “consisting of dissimilar or diverse ingredients

or constituents” [7], is an appropriate term for the content of this work as the

scope of this work covers a range of concepts and technologies which are made

possible by the pairing of two or more different materials, platforms, or concepts.

Further context of this work is the broader and more longstanding emergence of

Silicon Photonics, or more accurately the emergence of photonics on silicon whose

distinction is made in Section 1.1.1. Briefly, the promise of photonics technology

leveraging the investments in time, equipment, facilities, and human knowledge of

the CMOS fabrication industrial revolution to make lower cost and higher quality

components at previously unseen scales. Scale in terms of both higher volumes

and in many cases smaller and simpler devices and packages.

It is through this lens that I have focused my efforts.

1.1.1 The value of photonics on silicon, not just in silicon

The tremendous amount of focus given to Silicon Photonics in the past decade

as the platform promising to drive down costs and improve reliability while fre-

quently providing more dense and complex integration. Technical conference pre-

sentation rooms have flooded out the doors with eager participants in this tech-
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nological shift. The argument I wish to make here, simply stated, is that most of

these advantages are not about Si device layers at all, but rather about the use of

Si substrate in ”CMOS” fabrication facilities with their years of development in

equipment and personnel and substantial investment in the facilities themselves. I

emphasize that these photonics processes need not necessarily be CMOS processes

to leverage the advantages of CMOS.

The photonic technologies presented in this dissertation are not in Si at all,

with the exception of TiO2 clad Si results presented in 2.3, but rather on Si so as

to achieve compatibility with Si fabrication facilities. I argue that this approach

earns most merits of Silicon Photonics and potentially gains additional advan-

tages by not using Si optical properties. Hence, I will refer to these technologies

more broadly as Photonics on Silicon, focusing particularly on III-V Photonics on

Silicon.

With regard to the oft-quoted merit of silicon photonics, cost reduction, Table

1.1 provides some economic perspective on the use of silicon-on-insulator (SOI)

substrates, the backbone of Silicon Photonics.

Table 1.1: Approximate substrate minimum cost and maximum size [1]

InAs InP GaAs SOI Si

Minimum Substrate Cost ($/cm2) 18.25 4.55 1.65 1.30 0.12

Maximum size (mm) 75 150 200 450 450
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As is clear from Table 1.1, using SOI is an order of magnitude more expensive

than directly using Si substrates, comparable in cost to a GaAs substrate, and a

few times cheaper than InP, though InP and GaAs are not available at the larger

sizes of Si and SOI. Therefore, passive elements in SOI, though compact, do not

have an inherent cost advantage over conventional planar lightwave circuit (PLC)

technology on Si.

Non-silicon waveguides using Si3N4 or TiO2 have broader spectral bandwidth,

lower thermal drift, and in many cases lower loss than Si waveguides. These

waveguides can be implemented without SOI and therefore can be both lower

cost and higher performance.

With regards to active component integration, again the cost of SOI is lim-

iting in some cases. Simple heaters are available in PLCs for phase tuning and

advanced circuits requiring lasers and high-speed modulation and detection need

not be available in large areas of the PIC’s passive elements, such as arrayed

waveguide gratings (AWGs). The most-economic design would not be a com-

pletely monolithic III-V, nor would it be heterogeneous or hybrid integration of

III-V on SOI, it would likely come from a heterogeneous or hybrid integration on

bulk silicon that keeps passive elements in well established PLC technology on Si.

This type of integration is where the line is drawn between Silicon Photonics and

Photonics on Silicon.
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1.2 Literature review

This section presents an overview of the prior art in the fields discussed in

later chapters. Each subsection corresponds to the different Chapters 2, 3, and 4.

1.2.1 Athermal devices and designs

Managing temperature fluctuations in optical devices is not a new problem,

it as old as the field itself and I could fill 100 pages with references on the topic.

However, more recently the desire to develop uncooled circuits for silicon photonic

devices has reinvigorated efforts to develop new solutions. I therefore focus mostly

on silicon photonic efforts with an exception to circuit based schemes as those ideas

would apply to many platforms. I will also refer to select non-silicon works as a

potential inspiration for the solutions currently pursued on Si.

Packaging based athermal solutions: PLCs on Silicon offer superior pas-

sive components for most applications due to the highly reproducible fabrication

and the tolerances of working with silica and silicon nitride compared to higher

index difference waveguides. Additionally, fiber based gratings are implemented

in a number of systems because of the maturity of that technology. Both in-plane

and fiber-based solutions are typically dominated by material thermo-optical (TO)

behavior in SiO2. However, there is also a component of their drift with can be
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Figure 1.2: Schematic of athermal packaging solution for a conventional AWG.
[8].

owed to thermal expansion of the actual optical path length. This is material

specific and dominated by SiO2 cladding in the case of fiber and Si in the case

of in-plane devices fabricated on Si. To overcome both the material TO effects

Figure 1.3: Schematic configuration of AWG multiplexer with bimetal plate and
the corresponding change in temperature dependent spectral response. [9].

and thermal expansion, products and demonstrations have been made to force

the optical path length to remain fixed or even shrink by means of an external
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packaging solution shown in Fig. 1.2. In another example, a bimetal ”stresser”

attached to a conventional device can counteract the waveguide and substrate’s

natural inclination to both expand and bow, thereby compensating both material

TO and path length effects of SiO2 waveguides with stress as shown in Fig. 1.3.

Figure 1.4: Spectral response and temperature dependent Bragg wavelength
plots for athermally packaged fiber Bragg grating. [10].

For fiber Bragg gratings (FBGs), attaching the fiber to a single similar bimetal

stack is not entirely sufficient, so methods of fixing the gratings to a structure

that can be compressed or expanded from the two ends of the grating based on

external structures of appropriately balanced thermal expansion coefficients have

been implemented and achieve <0.5pm/K up to 70◦C shown on Fig. 1.4. Metal
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coatings have also been added to sections of fiber adjacent to the FBG and then

pinned to a mount of lower thermal expansion than the metal coating. This acts

to put strain on the FBG in opposition to it’s natural inclination to expand and

in opposition to the TOC of the waveguide of the fiber shown in Fig. 1.5.

Figure 1.5: Schematic and temperature dependent wavelength response of an
athermal packaging solution for a fiber Bragg grating [11].

In summary, there exist packaging solutions based on similar principles to

counteract the thermal effects present in optical devices. However, most of these

are for a single device and may not scale to a tightly packaged integrated circuit

with devices placed in different orientations and locations on the die or consisting

of different materials and or varied optical confinement within the same materials.

In other words, one packaging solution does not fit all devices in a circuit.

Circuit based athermal solutions: A number of clever circuits based ather-

mal solutions have been implemented, most notably that of an athermal, or tem-

perature insensitive imbalanced Mach-Zehnder interferometer (MZI) filter [12] and
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arrayed waveguide grating (AWG) [13]. These function by making the phase dif-

ference of the two paths temperature insensitive rather than the entire path itself

as with the packaging solution. As these are interferometric devices, their trans-

mission is based on this phase difference and therefore the transmission aptitude

remains unchanged if the phase differences are locked over a wider temperature

range.

This solution works for finite impulse response (FIR) filters and multiplexers

but is not easily translated to infinite impulse response (IIR) rings and Bragg

gratings or locking the cavity mode drift in a laser as is discussed more in depth

in Sections 2.1.2 and 2.4. For this problem, there is a body of work on finding

better materials to overcome thermal drift issues.

Organic materials based athermal solutions: Many polymers show very

strong negative thermo-optical coefficients (TOCs) and can, therefore, be used to

offset positive TOC materials like III-Vs, Si, and SiO2. Polymers have been used

for top claddings for surface Bragg gratings [14], low index claddings for SiO2

cores [15], as the core material itself [16], and over cladding for high index SOI

waveguides with and without slots ( [17], [18], [19], [20]) to enhance confinement

in the polymer and in AWGs [21] [22].

However, such polymers suffer from environmental sensitivity and degradation.

They often change behavior within oxygen exposure, plasma treatment, UV ex-
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posure, humidity and high temperature, and age more rapidly than other part of

a product [23]. Understandably, this is not a fair generalization with all polymers

for all applications, but it is a common counterpoint to consider when choosing

them for your application. Finally, integration of such material into a CMOS

facility can be met with resistance as they are not well established and therefore

present a risk to existing processes that must be evaluated on a per facility basis.

Inorganic materials based athermal solutions: For this reason inorganic

materials, such as TiO2 discussed in Chapter 2, are under serious consideration

for compensation of thermal drift on Si. Ta2O5 is another such candidate with a

negative TOC [24]. Sputtered TiO2 as an overcladding for silicon waveguides was

first shown by Alipour to significantly reduce thermal drift of a ring [25]. Later

demonstrations by [26] & [27] near 1550 nm showed additionally promising results

with implementations in Si ring based modulators and for both polarizations.

Some demonstrations were made with TiO2 as a core material, but they did not

focus on the thermal characteristics of these guides [24] [28]. Therefore, no com-

parisons could be made with the thermal measurements of TiO2 core waveguides

presented in Section 2.2. However, earlier demonstrations of TiO2 co-deposited

with SiO2 did target athermal behavior and achieved <1 pm/K [29].

Trimming: Interestingly few of the material based athermalization reports

discussed trimming the devices post-fabrication, though nearly all used a ring
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structure to characterize the athermal nature of their devices. The narrow reso-

nances in rings, in particular, are very sensitive to fabrication variation. There-

fore, a method of tuning to a resonance post-fabrication or as an intermediate

fabrication step is vital. This is particularly an issue on silicon as a simple and

common tuning mechanize, thermal tuning, would be useless in an off-resonance

athermal ring. In silicon, implantation based index tuning has been demonstrated

as a potential solution to this trimming problem. Once the index change caused

by the defect of the implantation is made, the trimming process can be achieved

by some form of local heating to reverse the index perturbation, for example by

annealing [30], or locally with a focused laser, for example [31].

Alternatively, a Si3N4 top layer to a Si ring can be patterned and etched on

a per ring basis in an automated process whereby the partially fabricated ring is

tested at wafer level, and then a programmable lithographic step such as electron

beam lithography is used as demonstrated in [32,33]. This is more appealing than

the implantation process as the additional loss of implantation can be greater than

the scattering loss due to surface roughness of the tuned Si3N4 over cladding.

In an alternative trimming process, a UV photosensitive As2S3 chalcogenide

glass partial upper cladding has been deposited on a silicon waveguide. The

effective index of the mode can then be trimmed by selective UV exposure of

circuit elements. This has been further top clad with a negative TO polymer [34].
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This is the ideal case, where a device can both be trimmed and made athermal.

We have yet to demonstrate this, but As2S3 chalcogenide glass could be used as

the upper cladding of the athermal revealed waveguides shown in 2.2. Assuming

this proves reliable, this is an excellent future direction for this work.

Higher order effects: One topic also often overlooked by the literature

on athermalization of structures in silicon is the higher order TOC of Si itself.

Across the functional temperature range of Si for most applications dn/dTSi has

been measured to change from 1.85×10−4K−1 (at 300K) to >2.0×10−4K−1 (at

380K) [35]. This may seem like a small shift, but athermalizing materials such

as polymers also have higher order changes in dn/dT with temperature and in

the same direction [22] & [36]. The result can be a strong quadratic resonance

drift with temperature, perhaps hidden by the small temperature ranges of many

publications. We too witnessed this effect in TiO2 clad silicon rings tested near

1310 nm and a summary of this finding will be presented in Section 2.3.

1.2.2 GaAs-based devices on Si

Bonding of GaAs to Si: There were some early attempts to transfer InGaAs

quantum well active material onto SiO2 on silicon, similar to the work presented

in this dissertation, but without the intention of photonic integration with PLC

waveguides. Successful transfers and characterization of these films were made as
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early as 1989 and showed that a high material quality could be retained following

lift-off and film transfer by use of a hydrophilic van der Waals bond [37]. Later

lasers were actually fabricated using spin-on-glass as an intermediate layer [38].

Similar spin on glass bonding was conducted as part of this work at UCSB. How-

ever, voids were more numerous and the curing temperature was higher which

lead to an increase in bonding related defects, so this process was abandoned in

favor of plasma assisted bonding.

The problem of defect migration from the bonding interface was identified early

as an issued with all such bonding processes involving substrates with dissimilar

coefficients of thermal expansion. It was proposed to add an intermediate layer

near the bond interface to reduce this issues as early as 1998 [39]. The details

of the most appropriate intermediate layer were not clearly defined at this point,

however we discuss work in bonding superlattice structures which have been shown

to be highly effective in InP heterogeneous devices in Section 4.2.2.

Electrical interfaces between Si and GaAs have also been pursued, with inter-

mediate layers from metal/solder bonding interfaces [40] and [41], to InP [38] or

Sn doped SeS2 [42]. However, a potentially preferable direct bonding approach has

been demonstrated for highly doped p-GaAs to p-Si interfaces and even fabricated

into CW quantum dot lasers [43].
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Growth of GaAs on Si: Many would argue that growth of III-V material

on Si is the best approach and it is therefore an active area of research. Owing

to the lattice mismatch of GaAs and Si intermediate layers are also required to

achieve quality device material in the grown III-V. These layers either are full of

defects themselves making them not desirable optically and/or electrically, or it

is made of a narrow band gap material like Ge which would rapidly absorb the

light passing through it. There may indeed be a path forward for direct growth

of GaAs type material on Silicon Photonics circuits, as performance in this area

is continuously improving with very promising QD on Si results coming out of

several groups [44], [45]. However, I would argue that the benefit of such growth

may first be realized as a low-cost growth substrate for material used in a selective

area die bonding approach as discussed in [1]. Again, this need not be to SOI,

but could be at shorter wavelengths with a bulk Si PLC carrier with small III-V

device areas.

1.2.3 TiO2 devices on Si

TiO2 is a wide band semiconductor (>3 eV ) which has previously been used

for a high-k dielectric in Si transistors. Additional examples of TiO2 in resistive

switching memory devices [46] and as the gate for MOS capacitors [47] show that

though it has since been eclipsed by HfO2 as the gate oxide of choice, it still is a
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CMOS compatible material making it a negative TOC material of least resistance

for introduction to a CMOS facility.

A fairly detailed process flow for a TiO2 top clad silicon modulator is provided

in [26] including a nice presentation of process conditions for the sputtered TiO2

and the resulting figures of merit n and dn/dT . Loss data was reported for these

waveguides from 1-9dB/cm increasing with decreasing waveguide width. A more

direct measurement of similar material was made using a coupled prism propa-

gation loss measurement which found a propagation loss of 0.4dB/cm verifying

TiO2 as a low loss material [24]. These works also made an important observa-

tion about the thermal budget of TiO2. Both attributed significant increases in

loss to anatase crystal formation at temperatures as low as 350◦C. This matches

additional publications on the material characterization of TiO2 which show first

anatase, then rutile crystal transitions with increasing anneal temperatures [48].

1.3 Dissertation overview

The dissertation is broken into three main chapters followed by a conclusion

and future work chapter. The following three chapters cover athermalization on

silicon; a path towards heterogeneous integration of GaAs type lasers with Si3N4
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core waveguides on silicon, and finally a chapter on key fabrication developments

on this path.

The type of athermalization which this dissertation focuses on is materials-

based waveguide athermalization explicitly with TiO2, as it is semiconductor based

CMOS compatible material, with both an index ∼ 2.2 or greater at 1550, and a

thermo-optic coefficient about as strong as Si, but negative. The type of heteroge-

neous integration which Chapter 3 focuses on is of InGaAs/GaAsP multiple quan-

tum well lasers grown on GaAs transferred to the SiO2 partial upper cladding of

a Si3N4 strip waveguide by low-temperature O2 plasma assisted bonding for laser

integration. Chapter 4 has some details and rationale behind the processing used

in this dissertation. Importantly, more than just a process follower both successes

and failures, and the insights gained through the development are presented. The

final chapter summarizes the findings of this dissertation and gives an outlook for

the future.
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Athermal Devices and Designs on
Silicon

Thermal stability is an important topic in integrated photonics research. The

need for athermal structures is clear for photonics applications from low-cost com-

munications links in data centers, passive optical networks, microwave photonic

filters and sensors. The current solutions use either single channels, coarse wave-

length division multiplexing (CWDM), temperature stabilizing feedback loops or

a power hungry thermo-electric cooler (TEC).

This is an active research area with a number of solutions to address this chal-

lenge by designing intrinsically athermal structures. We would classify them into

packaging solutions [8, 9, 49], circuit-based approaches [12, 13, 50], and materials

solutions. Among the materials solutions, the overwhelming majority have used

polymers [22]. Oft-quoted issues with these polymer-based solutions include pro-

cess compatibility, performance degradation, long-term reliability, and narrowed
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operating temperature conditions. Much work to address these concerns contin-

ues, and in the end such solutions may be useful. However, titania (TiO2) has

recently been suggested as a CMOS compatible alternative material to polymers

for enabling athermal waveguides in photonic integrated circuits [51]. The rea-

son for this is its strong negative material thermo-optic coefficient (TOC) dn/dT .

Literature has quoted its TOC in a range of − (1− 6.5)× 10−4K−1 partially due

to deposition method [26,51,52].

This chapter holds application examples, device demonstrations, numerical

simulations, and theoretical explorations of using TiO2 as a CMOS compatible

athermalizing material on Si. This type of athermalization has not been demon-

strated in other platforms such as InP to the author’s knowledge because of the

relatively high index of any type of (Al)InGaAs(P) lower cladding compared to

negative TO materials. New materials data for TiO2 are presented with a real-

istic projection of both the promise and pitfalls of the material. More generally,

novel athermal laser designs are presented enabled by athermal waveguides in a

heterogeneous III-V on Si platform.

This research is important because the future is moving towards highly inte-

grated uncooled systems. Such integration will not scale or achieve cost targets

without the simplicity of athermal design.
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We project as much as a 100 fold improvement of spectral efficiency with the

use of athermalized circuits over conventional CWDM solutions. Two approaches

to achieve this are given. A novel TiO2 core waveguide is presented with <3

pm/K thermal drift. A simple modification of a silicon rib waveguide by adding a

TiO2 cladding is demonstrated to reduce thermal drift of both gratings and rings

at 1300 nm.

2.1 Applications and background for integrated

athermal devices

There is a strong desire in a number of fields to develop photonic integrated

circuits (PICs) that are athermal. What level of thermal insensitivity would be

considered athermal is application specific, so the following examples should help

illustrate what constitutes an athermal circuit. In general a wavelength selective

element such as a multiplexer, ring, or grating is placed in the circuit to isolate one

or more particular optical frequencies. Simply put, an athermal circuit should be

able to maintain this filter response over a range of temperatures. The nature of

conventional PICs is such that waveguides are comprised of dielectrics and semi-

conductors with positive thermo-optic coefficients on a substrate with a positive

thermal expansion coefficient. This tends to cause a drift of all wavelength selec-
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tive components to longer wavelengths with an increase in the temperature of the

environment. Athermal circuits do not drift and therefore do not need to be held

at a single temperature.

2.1.1 Application examples

In sensing applications that use filters targeting particular molecular reso-

nances, a desire to limit or engineer this thermal drift is very clear. For example,

when monitoring molecular resonances that shift only slightly with air temper-

ature an athermal circuit would have to have a filter bandwidth equal to the

resonance shift across this small range and no more. A conventional (III-V or

Si) circuit may require a filter bandwidth of 10-20 nm to capture such a reso-

nance from 0-80 ◦C. Its ability to differentiate between molecules would suffer

not withstanding the tremendous amount of noise such a wide filter could add

to the signal. An SiO2 based circuit could have as much as an order of magni-

tude less drift, but this could still be too much for many applications and you

would lose the active component integration of III-V or Si. A preferred solution

would passively maintain a narrow bandwidth no greater than the thermal drift

of the resonance itself. In this chapter we present demonstrated thermal drift ∼2

pm/K, 40 times better than a Si filter and nearly an order of magnitude better
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than SiO2. This holds the potential for similar significant reductions in signal to

noise or integrated circuit stabilization for such sensors.

Another application of athermal circuits is in communications. Athermal de-

vices are needed as a method of increasing the single lane bandwidth of uncooled

interconnects. Uncooled wavelength division multiplexing (WDM) interconnects

are the clear choice for reasons of energy efficiency to address the exponential

growth of demand for bandwidth. At this time, new solutions are required.

Bandwidth demands for a given range of wavelengths, typically a single laser

gain medium bandwidth, can be met by either an increase in the number of sym-

bols per bit of a single channel or by increasing the channel spacing or some

combination of the two. Figure 2.1 illustrates the trade-off as normalized to a

10Gbps non-return to zero (NRZ) signal. Usually the energy cost of digital signal

processing for anything beyond the simplest of higher order modulation schemes

would tend to bias a designer to pursue denser channel spacing before advanced

modulation. However, this requires that one address the thermal drift challenge.

Figure 2.1 assumes the spectral efficiency of higher order modulation signals scales

linearly with channel spacing and modulation order as a first order approximation.

A similar trade-off exists at higher baud rates.

In Section 2.4 we explore the concept of an athermal laser as part of the so-

lution to this problem. Tunable lasers are also a potential solution, however the
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Figure 2.1: This plot compares two methods of improving spectral efficiency
in a transmission link. Assuming the link is uncooled you are limited to coarse
WDM (20 nm) spacing if you can not thermally stabilize your channels. If you
can make a link with athermal components you gain a factor of 100 that makes
on-off-keying comparable to the highest order modulation schemes.

feedback schemes required to stabilize them are more complicated than the ap-

proaches proposed here or require the additional complexity of an off-chip filter

and monitor (wavelength locker) or on-chip temperature sensor and lookup table

with associated memory and logic. The following sections include a brief back-

ground of the concepts and technologies that enable these novel designs and a few

examples of designs that meet the requirements of uncooled WDM laser sources.
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2.1.2 Circuit-based athermalization

The simplest athermal technology is the athermal waveguide, broken into

athermal circuit-based guides and materials-based guides. Circuit-based guides

have been used to create finite impulse response (FIR) filters where the temper-

ature sensitivity of the center wavelength is reduced significantly [13, 53]. Some

of the common FIR filters that can be made athermal are shown in Fig. 2.2.

The main design methodology used in these structures is that the filter response

depends only on the phase difference between the interfering waveguides and not

the absolute phase shift. By co-integrating waveguides with different thermo-optic

coefficients, and adjusting the length of each waveguide type, the phase difference

between the neighboring waveguides can in principle be independent of tempera-

ture, over a range in excess of 50 ◦C [13, 53]. The same principle does not apply

to the case of infinite impulse response (IIR) filters, such as ring resonators and

Bragg gratings, as the filter response depends on the absolute phase shift. This

significantly reduces the temperature range over which they can be compensated

using the same technique. Also, the filter shape and insertion loss would vary

thereby forming a limitation of circuit-based techniques to create IIR filters.
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Figure 2.2: (a-c) Three FIR filters whose response can be made less sensitive
to temperature variation by using two waveguide types (shown in red and black)
each with a different thermo-optic coefficient. (d) Vector representation of effective
path length for circuit (a) showing the principle whereby the phase difference of
the paths is constant with temperature (T and T’) [54].

2.1.3 Waveguide and grating athermalization

Starting with a simple waveguide defined by only the core and cladding mate-

rial parameters, guided modes can be found by solving Maxwell’s equations given

the geometry and dielectric constants. The core typically has larger refractive

index than the cladding. However, exceptions to this exist such as large low in-

dex core guides with a partial thin higher index cladding, slot type guides and

photonic crystal waveguides. Regardless of the type, guided modes need different

materials, and the mode is confined in both core and cladding(s).
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So, how do we make such athermal waveguides? For a Fabry-Pérot (FP)

etalon, the resonant wavelength shift with temperature, dλr/dT , can be shown to

follow the equation,

dλr
dT
≈ λr
ng

(
neffαsub +

dneff

dT

)
(2.1)

where,

dneff

dT
=
∑
k

Γk
dnk

dT
(2.2)

This approximates the thermal expansion of the waveguide by that of the

substrate, αsub, and intentionally uses a partial derivative of the effective index,

neff , with respect to temperature, T, such that this waveguide thermo-optic term

can be expressed purely in terms of material thermo-optic coefficient, dnk/dT ,

and confinement factor, Γ, for each material k [55].

Γxy =
n

neff

∫
wk

∫
hk
|U(x, y)|2dxdy∫

x

∫
y
|U(x, y)|2dxdy

(2.3)

U(x,y) is the normalized transverse electric field profile. n is the index of

refraction of the material for which the confinement is being calculated, and neff is

the group index of the mode. For this cross-sectional representation, the extents of

the integration are equal to the extents of the material wk and hk in the numerator

and all of space x and y in the denominator.

To describe an athermal waveguide with the confinement model in Equation

2.1 alone is not a complete enough description. Generally, athermal waveguides
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require a description of the layout and mechanical behavior of the waveguide

including the substrate and packaging. As evidence of this assertion, I site publi-

cations on a commercialized technology to take a conventional AWG and package

in a way to make it athermal. [8, 49] Nothing in the standard description of the

core geometry, or core and cladding material parameters has changed, but the

behavior of this phase sensitive interferometric device is completely altered with

respect to a change in temperature. This can be explained by modifying the ther-

mal expansion assumption and adding stress σ into the typical description of a

waveguide thermo-optic term dneff (σ, λ, T )/dT . Note the full derivative rather

than the prior partial notation. See Section ?? for a more complete derivation of

each case.

Therefore either both core and cladding materials must be athermal or one

must have a mix of positive and negative thermo-optic materials with correspond-

ingly engineered confinement in each material to make an athermal waveguide. In

order to understand the thermo-optic principle, let’s start with the definition of

refractive index in dense materials given by the Clausius-Mossotti relation [56].

This is similarly referred to as the Lorentz-Lorenz equation or Maxwell’s formula.

For this argument, I will use a derivation with explicit temperature dependence

to make it clear what is happening [57].

n2 − 1

n2 + 2
=
ρ(T )α(ρ, T )

3ε0
(2.4)
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or

n =

√
2ρ(T )α(ρ, T ) + 3

3− ρ(T )α(ρ, T )
(2.5)

where

2ρ(T )α(ρ, T ) + 3 > 3− ρ(T )α(ρ, T ) > 0 (2.6)

For this expression ρ is the density of the material, α is the molecular polariz-

ability, T is temperature, and n is the index of refraction. The derivative of this

expression gets complicated and may cloud the discussion. However, it is clear

from equation 2.5, if an increase in temperature causes the density-polarizability

product to increase, the material will have a positive TOC. If it decreases with

temperature, the material will have a negative TOC. With no external influence

such a stress or pressure, and assuming the material is not undergoing a phase

change, the density of a material will tend to decrease with increasing temper-

ature, hence the term thermal expansion. Therefore without a compensating

increase in the polarizability with temperature, all materials would tend to have

negative TOCs. This is not true of most materials, in fact, of nearly all materials

conventionally used in photonic integrated circuits, there is an increase in polar-

izability with temperature that more than makes up for the decrease in density

with increasing temperature. There are, however, a group of materials with large

coefficients of thermal expansion including alkali and thallium halides, and titania
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that overcome the thermal variation in polarizability to achieve negative TOCs.

This points out the impact of coefficient of thermal expansion (CTE) on the TOC.

Typical behavior of solid materials:

↑ T =⇒ ↓ ρ(T ), ↑ α(ρ, T ) (2.7)

Direct correlation of the CTE and TOC is an oversimplified description of the

problem because as it is explicitly stated in Equation 2.4, the polarizability is

a function of temperature and density and the complicated electron distribution

of the material. For example studies on SiO2 glasses including TiO2 and other

glasses have shown that adding TiO2 not only doesn’t increase the CTE of the

glass, there is no correlation between the CTE and TOC of such mixed glasses [58].

However, barring changes to the molecular structure of the material, it is clear

that mechanically enhancing or suppressing the expansion of the material will

directly impact the TOC. Therefore, thermal stress induced by mismatches in

thermal expansion of substrate, core, and cladding materials can be significant.

Each film has a CTE according to the manner in which it is deposited. How-

ever, this expansion is a three-dimensional process and will be pinned in the plane

to the expansion of the substrate. For this reason, I have focused on values from

materials deposited on silicon summarized in Table 2.1 below.
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Table 2.1: Material properties used in CMOS compatible athermal waveguides

Material CTE (×10−6/K) [Ref.] TOC (×10−5/K) [Ref.] n(1550nm)

Si 2.618 [59] 18.6 [60] 3.478

SiO2 .55 [61] 1.19 [61] 1.445

Si3N4 2.5 [62] 2.4-4 [52,63] 1.98

TiO2 7.5 [62] ∼-(10-65) [26,51,52] 2.18

2.2 Athermalized TiO2 core waveguides

Ring resonators with TiO2 core confinement from 0.05 to 0.42 are fabricated

and measured for thermal sensitivity achieving -2.9 pm/K thermal drift in the

best case [64]. Materials used are CMOS compatible (TiO2, SiO2, and Si3N4) on

a Si substrate. The under-discussed role of thermal stress in thermo-optic behav-

ior is clearly observed when contrasting waveguides buried in SiO2 to those with

etched sidewalls revealed to air. Multiphysics simulations are conducted to pro-

vide a theoretical explanation of this phenomenon in contrast to the more widely

reported theories on thermo-optic behavior dominated by confinement factor.

2.2.1 Background

In this section, we present some experiments with ring resonators offering a

clean and repeating spectral signature that one can track even with only small
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deviations in their resonance wavelengths. A resonator is also an important device

for the proposed WDM systems and would, therefore, greatly benefit from thermal

stabilization for uncooled systems. The rings presented use TiO2 as a core material

rather than a cladding layer, as previously demonstrated [26,52].

Our measurements indicate that buried TiO2 core waveguides clad by plasma

enhanced chemical vapor deposition (PECVD) SiO2 with core confinements rang-

ing from 0.07 to 0.42 exhibit dneff/dT on the order of the published SiO2 (∼

10−5K−1) regardless of confinement. This implies a TOC of TiO2 of (−10−6K−1),

two orders of magnitude less than literature values. We argue that in such

geometries the thermo-stress-optic (TSO) effect can dominate the TOC, which

contradicts current literature on athermal waveguides which use a confinement

model without dispersion, thermal path length expansion, and stress considera-

tions [26, 27, 51, 52]. Given the results discussed in Section 2.2.3, we developed

theory and conducted simulations to explain our experimental results.

2.2.2 Waveguide geometry and fabrication

A single lithography process with a chromium hard mask was used for all

waveguides. 15 µm of thermal oxide was grown to eliminate potential substrate

leakage for thin core geometries. Amorphous TiO2 was DC sputtered at 2300 W

in an Ar/O2 (20/10 sccm) environment with a Ti target at room temperature in
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Figure 2.3: This is a process summary of the titania core waveguide process.

an Endeavor tool. The measured index is 2.18 at 1550 nm in a J.A. Woollam

Co. Inc variable angle spectroscopic ellipsometer (VASE). Si3N4 is deposited

using low-pressure chemical vapor deposition on both sides of the wafer using a

stoichiometric process with a refractive index of 1.98 at 1550 nm as measured in

the VASE. High-density PECVD SiO2 films deposited at 300◦C is used as cladding

above the core.

Lithography was done using an ASML PAS 5500/300 deep ultra-violet pho-

tolithography tool. Dry etching was done with an inductively coupled plasma

etcher for the Cr hardmask with a Cl2/O2 chemistry, followed by a CHF3/CF4/O2

dry-etch of the core. This core etch sufficiently removed the photoresist softmask

such that only the Cr remained. The Cr was then dry-etched. The revealed core
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was cleaned with O2 plasma to remove the remaining polymer from the ICP etches.

Buried waveguides had additional PECVD SiO2 over cladding. The samples were

then diced and tested as described below in Section 2.2.3.

Figure 2.4: Cross section of waveguide designs with TiO2 or hybrid cores.

Figure 2.4 shows the three waveguide cross sections reported in this work. Of

note is the buried versus revealed designs.

2.2.3 Measurement setup and results

Using a tunable laser, polarization controller, lensed fiber facet coupling and

a photodiode, we tracked the TE resonance of the through port of ring resonators

with temperature (15-40◦C) for a range of waveguide geometries (widths, thick-

nesses and radii) with 0.07 to 0.42 material confinement factors simulated in

Fimmwave. This diverse set was used to span a large range of confinement factors.

These measurements are plotted in Fig. 2.5(a) with simulations using a confine-

ment model detailed in Section 2.2.4. Geometric details are provided in Table

35



Chapter 2. Athermal Devices and Designs on Silicon

2.2. Figure 2.5(b) adds measurements from two sources which reported a range of

geometries [26, 27]. Our buried structures clearly stand out in these data sets as

Figure 2.5: (a) Measured thermal drift with confinement models based on
Eq. 2.9 with separately fitted TiO2 TOC for buried (-10−6K−1) and revealed
(-2.5×10−4K−1) rings. (b) Measurements compared to other literature with TiO2

cladding demonstrate a unique suppression of TOC in buried TiO2.

having negligible change in thermal drift with increasing TiO2 confinement. From

this we conclude that the TiO2 TOC is effectively suppressed to ∼ -10−6K−1 by

burying these TiO2 cores. This effect is released when the sidewall of the TiO2

is revealed by co-etching the top cladding and the core as shown in Fig. 2.4(c).

These revealed structures fit a confinement model described in Section 2.2.4 with

a TOC of -2.5×10−4K−1 which is more comparable to the UC Davis and Cornell

results using TiO2 as a top cladding which also lacks a thermal stress induced by

full top SiO2 cladding.
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Further evidence of the impact of burying the TiO2 core with SiO2 was found

by top cladding revealed structures exhibiting the strongest negative TO behavior

and seeing comparable suppression to those fabricated as buried structure initially.

2.2.4 Theory and simulations

The analysis in Section 2.2.3 results in two separate TOCs for the same TiO2

material processed in nearly identical conditions, which is in contrast to an intu-

itive understanding of TOC as a geometrically independent parameter. Therefore,

further exploration was conducted to converge on a model that explains these

measurements.

The most typical model for thermal drift is a confinement model. Below is a

derivation of this model for a ring resonator with resonance wavelength λr.

mλr = 2πR(T )neff (λr, T ) (2.8)

dλr
dT
≈ λr
ng

(
neffαsub +

∂neff

∂T

)
(2.9)

where,
∂neff

∂T
=
∑
k

Γk
∂nk

∂T
(2.10)

The ring radius, R, and the effective index, neff , are explicitly a function

of temperature, T , and m is the longitudinal mode number, m. The ring radius
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canceled out and is not in the final Eq. 2.9. The use of partial derivative in ∂nk/∂T

implies the term is only a function of temperature. The material confinement

factor, Γ, as define by Visser et al. in [65], quantifies the overlap of the optical

mode with each material k. The resulting ∂neff/∂T is the sum over all k materials

in which the light interacts. The final assumption is that the expansion of the

actual waveguide path length is dominated by the linear thermal expansion of the

525 µm Si substrate αsub.

Below is an alternative derivation for a combined model including stress terms

similar to [9, 66]. Throughout this derivation, subscripts have been used as a

shorthand for the stress tensor σij, and a constant tensor βij.

mλr = 2πR(σij, T )neff (λr, σij, T ) (2.11)

dλr
dT
≈ λr
ng

(
neffαsub +

dneff

dT
+ βij

dσij
dT

)
(2.12)

where,
dneff

dT
≡ ∂neff

∂σij

∂σij
∂T

+
∂neff

∂T
(2.13)

As a stress term is added to neff and R, the derivation of dλr/dT has both a

stress related term, and a subtle change in the confinement term ∂neff/∂T defined

in Equation 2.9. In Equation 2.12, I have very intentionally used dneff/dT rather

than ∂neff/∂T , though the wavelength dispersion is all represented in the ng as

38



Chapter 2. Athermal Devices and Designs on Silicon

before. For this reason Equation 2.13 includes both the original ∂neff/∂T , from

Equation 2.10, and a partial derivative with respect to the thermal stress tensor.

There is also a stress induced path length change term with a device dependent

constant tensor βij, which is significant when athermally packaging a device such

as in [8, 9, 49]. For the purposes of devices in Table 2.2, this term is assumed to

be negligible in comparison to the αsub as the symmetric thermal oxide prevents

bowing and none of the packaging methods discussed in Section 1.2.1 or similar

methods are employed.

Three models are presented in Table 2.2 and plotted in Figure 2.6, the confine-

ment model, the stress model, and the combined model. The stress model is the

same as the combined model, however it assumes that ∂neff/∂T = 0. To calculate

the three models in Table 2.2 below, we use COMSOL finite element stress-optic

simulations in two dimensions with a generalized plane strain model to solve for

Eq. 2.13 and Fimmwave film mode matching model for accurate confinement fac-

tors, effective indices, and group indices for the fundamental TE mode. Unless

otherwise stated, we used the material properties in Table 2.3.

To better visualize the simulation data in Table 2.2 the comparison of simula-

tion results and measurement data is presented graphically in Figure 2.6.

Youngs modulus, E, Poissons ratio, ν, and linear thermal expansion coeffi-

cients, α, for all materials including the silicon substrate are shown in Table 2.3.
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Table 2.2: Comparison of thermo-optic models and measured data

Refractive indices relate with the thermal stress as described by three stress-optic

coefficients B1 and B2, and B3. In the case of and isotropic material, as we have

assumed SiO2, Si3N4, and TiO2 to be, B3 = B1 − B2. In Equation 2.14 n0 is the

scalar index without stress, and dnij, and σij are the stress induced index change

and stress coefficients respectively. As nij, and σij are functions of temperature,

T, and we are interested in their derivatives the cross terms which relate to B3

are not negligible, however σxz and σyz reduce to zero under the constraints of the
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generalized plane strain model.

dnxx

dnyy

dnzz

dnyz

dnxz

dnxy



=



nxx − n0

nyy − n0

nzz − n0

nyz

nxz

nxy



=



B1 B2 B2 0 0 0

B2 B1 B2 0 0 0

B2 B2 B1 0 0 0

0 0 0 B3 0 0

0 0 0 0 B3 0

0 0 0 0 0 B3





σxx

σyy

σzz

σyz

σxz

σxy



(2.14)

Table 2.3: Material properties for simulation (λ0=1550 nm)

TiO2 SiO2 Si3N4 Si

n 2.18b 1.445b 1.98b 3.478

dn/dT (10−5/K) -(10-65)a 1 2.4 [63] 18 [51]

B1 (10−12/Pa) a 0.65 [67] ∼0.65d -11.35 [68]b,c

B2 (10−12/Pa) a 4.2 [67] ∼4.2d 3.65 [68]c

ν 0.2 [69] 0.42 [70] 0.2 [71] 0.19 [70]

E (GPa) 65 [69] 78 [70] 285 [71] 110 [70]

ρ (g/cm3) 3 [67] 2.203 [70] 3.1 [71] 2.33 [70]

α(10−6/K) 7.5 [62] 0.38 [72] 3.0 [73] 2.6 [62]

a)Least squares fit, b)Measured, c)Full tensor is more accurate, d)Assumed

In addition to Table 2.2, dλr/dT for all three models is plotted against con-

finement factor in Fig. 2.6. It is clear from this Fig. the difference in the models.
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The confinement model in Fig 2.6(a) doesn’t result in a different thermal drift

behavior between buried and revealed waveguides as seen in measurements. The

stress model in Fig. 2.6(b), fitting for B1 and B2, shows a split between the

two waveguide types and fits the data better than the confinement model when

compared using an F test (α=0.1) to rule out the addition of a fit parameter.

However, the values B1 and B2 derived from the stress model fit are probably

non-physical as they are quite large. In contrast the combined model which fits

for B1, B2, and the TOC of TiO2 has a better least squares fit, but doesn’t quite

Figure 2.6: Comparison of the confinement, stress, and combined stress/confine-
ment model.

pass the F test (α=0.1) as a superior model given it uses three fit parameters.

However, this is backed by a clear physical model and has parameters that are

reasonable. This comparison may also be confounded by the large variation in

waveguide geometries that was required to span such a larger range of low con-

finements. By far and away the best model was a separate confinement model for
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each type of waveguide as shown in Fig. 2.5(a). Given most analyses will only use

waveguides of a similar stress profile and geometry, this may be a practical model,

however we do emphasize that it lumps all of the underlying physics into a single

non-generalizable parameter that cannot be fairly compared between a diverse set

of literature, as is apparent in the range of TiO2 TOCs already reported.

Figure 2.7 plots the thermally induced stress profiles of characteristic revealed

and buried waveguides showing the contrast of those stresses applied to the core

and adjacent cladding. As is clear from the plots, these waveguides have complex

and drastically different thermal stress profiles; which cause the large difference

in thermal drift uncorrelated to TiO2 confinement.

Figure 2.7: Comparison of the thermal stress profile of buried and revealed core
waveguides.

Finally, a difference in loss was observed when comparing the buried and re-

vealed waveguide structures. Using a fit to the ring spectra loss was calculated
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assuming negligible loss in the coupler. Buried structures presented with 4 µm

wide waveguides and 1232 µm ring radius typically had loss ∼0.5 dB/cm com-

pared to ∼1-2 dB/cm in revealed structures. We believe both to be scattering

loss limited and can therefore be improved with further process development.

2.2.5 Conclusions of athermalized TiO2 core waveguides

We have shown that TSO effects are important to performance of TiO2 core

waveguides most strongly indicated by reduction of the material TOC by more

than two orders of magnitude. Furthermore, we clarified the theoretical framework

for this phenomenon with derivations of three models of ring resonator thermal

drift. We believe that such buried channel waveguides show reduction in the

thermal expansion of TiO2, which is the likely cause of a stress-induced suppres-

sion of the negative TOC in TiO2. Revealing the sidewalls to air releases that

suppression. However, because of the complex nature of stress each waveguide

type requires numerical analysis to understand the role stress will play. In many

cases, this effect is at least as significant as non-stress related thermo-optic ef-

fects of the material and thus must be included to determine the correct TOC

of TiO2. To solve the thermal drift problem without polymers or active feedback

further stress research into TiO2 is required to enable CMOS compatible athermal

photonic integrated circuits.
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2.3 TiO2 top clad athermal rings and gratings

In order to have a more compatible process with existing Silicon Hybrid tech-

nology, TiO2 can be used as a top cladding layer on Si core waveguides. These

designs require Si waveguides that are both thin and narrow.

Using SOI with a 200 nm thick Si device layer on 3 µm of SiO2, a simple rib

waveguide is formed by etching trenches on either side of the waveguide down to

190 nm using a SixNy hardmask. The 60 nm Si slab layer is then revealed while

the top of the waveguide remains protected by SixNy. Then after stripping and

cleaning the photoresist and other contaminants, the waveguide is oxidized to both

smooth the sidewalls and shrink the width of the waveguide in a very controlled

way to a slab thickness of 30 nm. This is important to push the waveguide

width reliably below 200 nm, which is challenging for the ASML S500/300 DUV

stepper with a 248 nm source used for the entire process. Following this waveguide

formation, the hard mask is removed and the gratings are patterned 20-25 nm deep

so as not to expose the buried oxide Fig. 2.8 shows a top-down SEM of this grating

structure.
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Figure 2.8: Waveguide geometries. (a) top down SEM image of DBR before
TiO2 top cladding deposition, (b) cross-sectional diagram of DBR. (c) Cross-
sectional SEM of TiO2 clad Si waveguide with small voids visible in the TiO2 [74].

2.3.1 TiO2 top clad athermal gratings

The DBR gratings used were also limited by the stepper resolution to a 3rd

order design for Bragg wavelength around 1300 nm. This design has higher loss

and lower grating strength than a 1st order grating with the same grating gap

width WGap. Following the waveguide formation a deep etch of the silicon facet

is made and the TiO2 was sputtered on as a top cladding of 1500 nm so that that

mode has negligible interaction with the TiO2 air boundary we exception to the

small voids in Fig. 2.8(c). The grating has a waveguide width of 200 nm.

Reflection spectra of DBR gratings are measured using a broadband LED

source, a fiber optic polarizer and polarization controllers, an optical circulator

and an optical spectrum analyzer (OSA). Transmission measurements of the ring

spectra used a similar setup but with a tunable laser and photodiode. Resonant
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Figure 2.9: Peak reflectivity of 200 nm wide, 200 nm height third order DBR
gratings as a function of temperature. Sample was tested following cleaning and
N2 drying, first without baking (typical), second with a water droplet on top (high
humidity), and finally after a 5 min 200◦C dehydration bake (low humidity) [74].

wavelengths of a ring resonator and a DBR grating are plotted in Fig. 2.9. They

both show a distinctly quadratic relationship with temperature which has not been

reported for similar devices near 1550 nm. Further discussion of this phenomenon

is made in Section 2.3.3.

Figure 2.9 shows an environmental experiment to test the grating’s sensitivity

to humidity. Previous reports have been made which suggest that the negative

TOC of TiO2 deposited with atomic layer deposition (ALD) is due to evapora-

tion of water molecules from the film. The findings from this test suggests that
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the TOC of TiO2 is not significantly impacted by the presence of water for our

sputtered films.

One application of such athermalized gratings is in passively athermal DBR

lasers. Design of such devices is discussed in greater detail in Section 2.4.

2.3.2 TiO2 top clad athermal rings

Similar to the rings presented in [25], [26], & [27] near 1550 nm, UC Davis

made passive rings for development towards our athermal transmitter project.

SEM images of these rings with cross sections before and after TiO2 cladding are

shown in Fig. 2.11. The radius of the ring resonator is 25 µm with a 550 nm

coupler gap to a 200 nm bus waveguide.

Using data collected by UC Davis for 25 µm radius ring Si rings clad with

TiO2, is shown in Fig. 2.11.

There are a few predictable trends in the data in Fig. 2.11 that were under

discussed in prior literature. As the wavelength increases from 1270 nm to 1310

nm to 1340 nm the influence of the TiO2 also increases resulting in a blue shift for

the majority of the 20-50◦C temperature range. This is predictable as waveguide

dispersion causes the confinement factor in the TiO2 to increase with increasing

wavelength. Similarly, increases in the waveguide width cause a decrease in con-

finement and stronger red shift with temperature. This also was predicted and
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Figure 2.10: (a) Top-view SEM image of ring resonator before TiO2 cladding
deposition; (b) Ring-to-bus waveguide coupling region; (c) Cross-sectional SEM
image of waveguide before TiO2 cladding deposition; (d) Top-view SEM image of
inverse taper. (e) Shows the waveguide following TiO2 cladding with small voids
in the deposited film [74].

reported in [26] & [27]. However, the quadratic nature of the resonant wavelength

shift with temperature was neither predicted nor reported in previous work with

TiO2 on Si. A more detailed discussion of this observation follows in Section 2.3.3.

2.3.3 Discussion on second order effects

The majority of discussion in the athermal literature with TiO2 assumes a

constant dn/dT across temperature. Naturally this is not the whole truth, but

quadratic (and other higher order) shifts in resonance wavelength with temper-

ature are not observable over small ranges of temperature which many TiO2 re-

ports limited their data to [26,27]. To treat this problem appropriately we found
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Figure 2.11: Measured (black circle) and quadratically fitted (red line) resonance
wavelength as a function of temperature. The device with a waveguide width of
200 nm is measured at various spectral ranges around (a) 1270 nm, (b) 1310 nm
and (c) 1340 nm and across different waveguide widths (b) 200 nm, (d) 220 nm,
(e) 240 nm [74].

a discussion about polymer clad Si rings which also observed a strong quadratic

change in resonance wavelength with temperature [22]. We have borrowed gener-

ously from their analysis but applied our data and assumptions based off of our

knowledge of TiO2 clad rings. As we concluded in Section 2.2, a confinement

model is the best way to treat a group of waveguides of the same thermal stress

profile. Restating Eq. 2.9

dλr
dT
≈ λr
ng

(
neffαsub +

∂neff

∂T

)
(2.15)

we simply must do an expansion of dneff to add second order effects

dneff =
∑
k

Γk
∂nk

∂T
dT +

1

2

(
Γk
∂2nk

∂T 2
+
∂Γk

∂nk

(
∂nk

∂T

)2

+ . . .

)
dT 2 (2.16)

In Eq. 2.16 T is temperature, Γk is the confinement of the mode in a material

k of index nk and the change in effective index is the sum of contributions for
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all k materials. This can be broken into three basic terms, the first order terms

as used previously in Eq. 2.10, and second order terms that are due to material

quadratic thermo-optic effects

∑
k

1

2

(
Γk
∂2nk

∂T 2

)
dT 2 (2.17)

and those second order changes due to confinement factors change with tempera-

ture regardless of second order changes in the materials:

∑
k

1

2

(
∂Γk

∂nk

(
∂nk

∂T

)2

+ . . .

)
dT 2 (2.18)

Here we have just used the . . . to represent all of the cross terms dependent on

the number of materials in the waveguide. It turns out that the confinement

factor terms in 2.18 when simulated for in the case of the TiO2 clad rings are

negligible by nearly two orders of magnitude when compared to material second

order effects. With this knowledge it becomes simple to use the quadratic fit data

to calculate second order material thermo-optic properties of TiO2 with a subtle

change to the confinement model :

dneff

dT
=
∑
k

Γk
dnk

dT
≈
∑
k

Γk (βk + γkT ) (2.19)

For this we assumed literature values for dnSi/dT = βSi + γSiT = 1.834 ×

10−4 + 4.887× 10−7T K−1 from [75]. For SiO2 which has a much less significant

role in this case βSiO2 = 10−5K−1 and γSiO2 is assumed to be 0. A fit of the data
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in Fig. 2.11 results in dnT iO2/dT = βT iO2 +γT iO2T = −3.07×10−4 + 4.45×10−6T

K−1.

2.3.4 TiO2 clad Si rings and gratings conclusions

Though a materials solution for athermalization may indeed be the best for

applications such as rings and gratings that have no circuit-based athermal equiv-

alent, there are some finer details which will need to be considered. Section 2.2

highlights the importance of thermal stress as one such detail. In this section

second order material thermo-optic effects limit the athermalizing range. How-

ever, on the whole, viable athermal solutions exist which can stabilize circuits and

enable uncooled operation for low cost and energy efficient systems. The follow-

ing Section 2.4 projects the use of such athermal technologies inside of integrated

lasers.

2.4 Athermal laser design

This section discusses circuit-based and waveguide based athermalization schemes

and provides some design examples of athermalized lasers utilizing fully integrated

athermal components as an alternative to power hungry thermo-electric controllers
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(TECs), off-chip wavelength lockers or monitors with lookup tables for tunable

lasers. This class of solutions is important for uncooled transmitters on silicon.

In this section we explore the concept of an athermal laser as part of the so-

lution to this problem. Tunable lasers are also a potential solution, however the

feedback schemes required to stabilize them are more complicated than the ap-

proaches proposed here or require the additional complexity of an off-chip filter

and monitor (wavelength locker) or on-chip temperature sensor and lookup table

with associated memory and logic. The following sections include a brief back-

ground of the concepts and technologies that enable these novel designs and a few

examples of designs that meet the requirements of uncooled WDM laser sources.

2.4.1 Thermal dependences of lasers

In order to athermalize a laser, one must carefully design for thermal drift

of gain, loss, and cavity modes. Figure 2.12 shows a diagram of these three

effects and provides typical values from thermal drift in semiconductor lasers

with semiconductor mirrors. In general for an in-plane DBR, the thermal drift is

represented by Eq. 2.20. This is an approximation for 50% duty cycle gratings

and is similar to Eq. 2.9 utilizing the same definition in Eq. 2.10 for dneff/dT.

dλBragg

dT
=

1

m

λBragg

ng1 + ng2

(
(neff1 + neff2)αsub +

dneff1

dT
+
dneff2

dT

)
(2.20)

53



Chapter 2. Athermal Devices and Designs on Silicon

In Eq. 2.20 λBragg is the Bragg wavelength, or first order peak reflection wave-

length, m is the order of the grating, ng1,2 and neff1,2 are the group and effective

indices corresponding to the two periodically repeating segments of the grating,

and αsub is the linear coefficient of thermal expansion for the substrate.

Figure 2.12: (a) Diagram of typical in-plane semiconductor laser with dense
cavity modes where thermal drift is typically dominated by cavity loss. (b) A
similar DBR laser design with and intra-cavity ring filter to achieve a narrower
reflectivity bandwidth.

Thermal drift in gain is challenging to athermalize for because it is so funda-

mental to the change in band gap of the semiconductor gain material with respect

to temperature. The two examples that perhaps have done the best job of over-

coming this limitation are p-doping of quantum dots which can result in negligible

change in threshold current with temperature or T0 =∞ at low temperatures and

as much as 120K up to 85◦C [45,76], and the induction of hydrostatic pressure as

a means to automatically counteract the typical thermal effect on the band gap

and thus gain peak wavelength [77]. Thermal drift in loss is typically manifest in
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the most spectrally sharp loss of the cavity, the mirror. For in-plane lasers with

integrated DBR mirrors this drift, though it doesn’t drift as rapidly as the gain

peak, is the single most significant factor in laser wavelength drift. In contrast, in

short cavity lasers such as vertical cavity surface emitting lasers (VCSELs) cav-

ity mode drift is often the most significant. Athermalized VCSEL designs which

modify the cavity with polymers and air gaps to compensate for cavity mode drift

have already be proposed by Phillips et al. [78]. Our work focuses on in-plane

devices and therefore athermalization must be made both in the mirror and the

cavity.

2.4.2 Examples of integrated athermal lasers

One typical solution to temperature variations in uncooled WDM transmitter

has been to use a tunable laser locked to an external wavelength locker, which

varies only slightly with temperature or is itself regulated by a TEC. However, in

this work we propose some designs which require no or only minimal laser feedback

such that all lasers in an array can be easily integrated together with a channel

spacing considerably less than the 20 nm specification of conventional uncooled

coarse WDM.

Figure 2.13(a) shows a passively athermal DBR laser cavity, the simplest man-

ifestation of an integrated athermal laser requiring no tuning or feedback. The
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Figure 2.13: (a) Passively Athermal DBR Laser (b) Athermal Ring Filtered
DBR (ARF-DBR) Laser (c) cross section of III-V/Si Hybrid SOA or PD with
TiO2 cladding. (d) cross section of Si waveguide clad with TiO2 for a thermal
compensator.

principle is that the cavity mode thermal drift is accomplished by cavity design

following Eq. 2.22 and the mirror thermal drift is managed by creating an ather-

mal DBR mirror design following Eq. 2.20. The gain drift is not compensated for,

but rather the bandwidth of the gain can and must be wide enough to function

across the entire temperature range of the application space. Thermal roll-off via

self-heating can also be partially accounted for either by selection of a high T0,

defined in Eq. 2.21 by [79], material such as QDs or by simply aligning the low-

temperature lasing wavelength on the long wavelength side of the gain peak, as

shown in Fig. 2.12(a) such that heating will push the gain peak towards the min-

imum loss wavelength of the athermal mirror decreasing the threshold before it

increases again at the high-temperature range of operation where the gain drops.

This method of gain offset is a common technique utilized in current uncooled
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VCSELs.

1

T0
=

1

Jth

∂ln(Jth)

∂T
(2.21)

dλC
dT
≈ λC∫

LC

ngdL

(
αsub

∫
LC

neffdL+

∫
LC

dneff

dT
dL
)

(2.22)

Equation 2.22 represents cavity mode drift dλC/dT for an FP laser or similar

laser with broadband mirrors and multiple sections. The integrations are done

over a single round trip laser path length, LC , of the modal properties ng, neff ,

and dneff/dT . Finding the criteria that upholds the condition dλC/dT = 0 is

possible by use of a waveguide section with a negative TO coefficient if its length

is appropriately weighted with the sections of the laser that have a positive TOC,

such as the semiconductor gain region. Figure 2.14 plots the wavelength drift as

an example. Assuming that any additional packaging required to offset the gain’s

bandgap change with hydrostatic pressure or other such methods are prohibitive,

it is appropriate to use conventional semiconductor parameters. The platform

selected for this example is the Hybrid Silicon Laser Platform [80] with a mod-

ification where TiO2 cladding is added as an alternative to SU-8, a UV curing

photoresist. Therefore, with a single lithography, the waveguide width of the pas-

sive section with dneff/dT < 0 and the DBR section with dλDBR/dT ≈ 0 can be

integrated. Using the model based on data collected by Guha et al. [27] at 1550 nm

on 220 nm SOI, a 200 nm wide waveguide with 500 nm of TiO2 shows a dλC/dT =
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-20 pm/K, and a 270 nm waveguide guide is nearly athermal. The 200 nm guide

results in a dneff/dT for the negative TO compensation guide of ∼-4.3×10−5K−1.

This is compared to dneff/dT for the gain section of ∼2×10−4K−1 or a ratio of

just under 5 in length for the gain to negative TO waveguide. Therefore, for short

gain lengths possible on the Hybrid Silicon Laser Platform, the total cavity length

need not be greater than 1mm provided a strong negative TO guide is available

in the platform, as seen in Fig. 2.14. An issue does arise when using DBR lasers

that are ∼1mm long, which is that the FSR or the cavity is 0.4 nm, stipulating

that to get a grating stop bandwidth on the order of the free spectral range of the

cavity to avoid mode hopping requires a grating strength ∼10 cm−1.

dLeff

dT
≈ αsubLg

2
sech2

(2δLg

λ0

)
− Lg

δ

dδ

dT

(
1− λ0

2δLg

tanh
(2δLg

λ0

))
(2.23)

However, the length of the grating for appropriate reflectivity would then be

such that the cavity length itself would grow considerably as the effective grating

length, Leff , would become significant to the total cavity length. This is important

as dLeff/dT is proportional to the grating length Lg as shown in Eq. 2.23 where

δ is simply the difference in effective indices of the two periodic grating sections

neff1 and neff2. The Leff → Lg case is not shown in Fig. 2.14, which has fixed

grating lengths of 250 µm for all curves. This logical progression implies that

ideally the platform best suited to this design is one that has not been created yet

to utilize active III-V integration on waveguides both capable of highly negative
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and athermal TO drift. For example TiO2 core guides demonstrated with both

∼-100 pm/K and <-3pm K−1 drift [81]. Or if narrow FSRs with these thermally

compensated lasers are not avoidable, an intracavity filter should be used, as

discussed below and shown in Fig. 2.13(b).

Figure 2.14: Athermal DBR laser drift in pm/K vs. the length of a thermal
compensator waveguide as a function of (a) different passive compensator drifts
dnp/dT and (b) athermal grating strengths κDBR. Hybrid silicon gain region
length assumed to be 200 µm with compensator made of a Si core with TiO2

cladding, and 250 µm combined grating length for front and back. (a) assume
κDBR = 300 cm−1, (b) assumes dnp/dT = -3×10−5K−1.

Plotted in Fig. 2.14 is the trade-off of the athermal compensator waveguide

length with the choice of compensator waveguide and grating design. When using

a silicon waveguide compensator such as that in Fig 2.13(c) with a dneff/dT ≈

-3×10−5 K−1 for waveguides around 200 nm wide and 1.5mm long. Alterna-

tively, using a waveguide such as the TiO2 core guide in Fig. 2.13(d) has been

demonstrated with dneff/dT ≈ -17.5×10−5 K−1, which would reduce the required
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compensator length to 300 µm for an athermal design. Figure 2.14(b) shows little

impact of grating strength with selection of the compensator length.

Figure 2.13(b) shows an ARF-DBR utilizing a ring resonator as an intracavity

filter. If the design of the passive straight waveguides of the laser is such that

they compensate the positive TOC of the SOA as in the athermal DBR example,

then this filter can be athermal as cavity modes will not drift out of the filter.

However, as precisely aligning the cavity modes to the resonance of the ring may

prove to be beyond fabrication tolerances, a simple feedback scheme can be utilized

to maximize power to the wavelength monitor photo-diode, λ-PD, by tuning the

intracavity ring filter so the lasing mode is centered about the rear athermal DBR.

A number of feedback schemes would suffice here, for example a proportional-

integral-derivative (PID) controller. The power monitor photodiode, P-PD, also

is in a simple feedback with the SOA bias to regulate the output power of the

laser out of the front facet without tapping the signal power at the output of the

cavity. Of course, one can still tap the actual output with an additional monitor

PD, but this utilizes an existing port in the architecture and will act as a fair

and representative signal in most regimes of SOA operation, which is already

constrained by the lasing condition.

A ring filter is needed as the cavity length of a standard DBR reduces the

free-spectral range (FSR) to a point where it is not reasonable to integrate both
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narrow band (low grating strength, kappa) and high reflectivity (longer length)

mirrors. Therefore a ring filter is needed to prevent mode-hopping observed in

previous implementations of DBR lasers. Figure 2.12(b) show such a filtered

mirror response. The DBR bandwidth requirement is therefore loosened to the

channel spacing less any fabrication variation inherent in the technology used to

create the athermal grating rather than something as narrow as the laser FSR.

Designing the ring filter for this cavity requires a ring with a bandwidth on the

order of the FSR of the cavity and a tuning range on the order of the bandwidth

of the DBR. The rings FSR can be smaller than the channel spacing and is ideally

slightly less than the DBR bandwidth. The coupler designs can be made utilizing

Fig. 2.15.

Figure 2.15: (a) Drop port insertion loss in dB of a ring filter (i.e. from the
SOA to the rear mirror in Fig. 2.13(a). (b) Through port insertion loss in dB (i.e.
from the SOA to the P-PD in Fig 2.13(a). Assumes 1dB/cm propagation loss, 25
µm ring radius.
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Shown in Fig. 2.15(a), a symmetric design where both through and drop

couplers are identical is preferred for lowest total laser loss with the ring as an

intracavity element, as in Fig. 2.13(a). There is a little bit of flexibility in adding

an asymmetry in the ring coupler design without a large variation in drop port

insertion loss, however you can stumble into (or near) the quasi-critical coupling

region denoted by the sharp increase in through port insertion loss in Fig. 2.15(b),

which will block the through port transmission to a monitor PD. As is clear from

Fig. 2.15(a), this through port critical coupling regime doesn’t significantly change

the intracavity laser loss, just the ratio of power out of the multiple outputs of the

laser cavity. Therefore, the additional energy is lost in radiation out of the ring.

Finally, an additional example is shown in Fig. 2.16 with an integrated wave-

length locker. This wavelength locker uses a quarter wavelength shifted DBR as

a filter to the input of the integrated wavelength monitor photo-diode. Utilizing

either a wavelength operation point on the steep section of the high transmission

notch or the maxima of this notch to reduce back-reflections into the laser, a

dither can be added to a phase section of the tunable laser to make a signal for

the monitor diode which can be interpreted through the PID controller on the

co-packaged Tx driver board. An athermal grating is used for this filter because

it has a higher fabrication tolerance to hit a precise wavelength than a ring to

eliminate tuning.

62



Chapter 2. Athermal Devices and Designs on Silicon

Figure 2.16: (a) Schematic of an integrated transmitter with on-chip wavelength
locker utilizing a quarter wavelength shifted DBR as a filter to an integrated mon-
itor photodiode. This is co-packed with the control electronics. (b) the transmis-
sion of the wavelength locker filter concept is plotted with a slight wavelength
dither on the high slope region of the transmission notch caused by the λ/4 shift.

2.4.3 Athermal laser design summary and conclusions

An argument for targeting denser uncooled channel spacing was made followed

by a review of how to achieve this with athermal designs. A simple athermal cir-

cuit concept implementable in MZIs and AWGs on most platforms is reviewed and

shown to be limited for IIR filters, such as rings and DBRs. Therefore, materials

based athermal waveguides are presented as an alternative to overcome such limi-

tations with a brief theoretical description. The presence of SiO2 lower cladding in

SOI enables increased confinement in a negative TOC material top cladding of a

Si core waveguide, making it possible to achieve both zero and negative waveguide

63



Chapter 2. Athermal Devices and Designs on Silicon

TOCs. Therefore, athermal laser designs based on a modification of the Hybrid

Silicon Laser are proposed to utilize such athermal waveguides without the use

of external wavelength lockers required for conventional tunable lasers solutions.

These proposed designs encompass entirely passive athermalization, and simple

feedback loops with passively athermalized integrated reference filters using ather-

mal DBR gratings. We project that such designs will provide the basis for a new

class of uncooled lasers for photonic integrated transmitters.

2.5 Conclusions

This chapter on athermal devices and designs for integration on Si covered

some background for current solutions to athermalized circuits with a key point

that circuit-based athermalization without sections of negative TOC material can

only create FIR filters such as MZIs and AWGs. IIR filters such as gratings and

rings require material based athermalization. Fabricated, tested and analyzed

waveguides using TiO2 as the negative TOC material were demonstrated in rings

and gratings. Through deeper analysis of the actual devices, the key topics of

thermal stress and second order material TO behavior were discovered and quan-

tified.
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The need for athermal PIC circuit design will increase as more uncooled so-

lutions are implemented. If this work is done on Si, we recommend TiO2 as

a compatible material with more tolerance to environmental degradation than

polymer alternative. However, further exploration in this area should consider

the effects reported here as important details to consider in future designs.
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Chapter 3

III-V/Si3N4 Heterogeneous Laser
Integration

3.1 Introduction

Traction has been made in recent years in development of III-V/Si heteroge-

neous lasers using wafer bonding of III-V InP based material to silicon-on-insulator

(SOI) in order to leverage Si fabrication facilities, diagnostics and process con-

trols [80, 82]. The emergence of high volume datacom products using this tech-

nology will open these facilities to other products, including using multi-project

wafers with different bandgap materials [83]. In this work we utilize bonding tech-

nology to enable integration of new components at shorter wavelengths, starting

with an InGaAs/GaAsP MQW laser operating near 1060 nm. This wavelength is

absorbed in a silicon waveguide, so we use a SiO2 clad Si3N4 waveguide, which is

coupled to III-V via a tapered mode converter. Figure 3.1 shows our concept of
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a directly bonded III-V laser onto Si3N4 waveguides and processed post-bond to

achieve lithographic alignments and resolution for III-V device fabrication. This

approach can be used at wavelengths from the visible to the infrared to integrate

lasers and other active components to low-loss Si3N4 waveguides and devices such

as arrayed waveguide gratings (AWGs).

Figure 3.1: Schematic of III-V/Si3N4 heterogeneous laser directly coupled via
III-V tapers through the III-V/SiO2 cladding bonding interface. (artwork courtesy
of Martijn Heck)

Because of its low water absorption, 1060 nm is great for applications in sens-

ing, free space communications, medical applications, LiDAR, high power low

divergence lasers [84], and seed sources to fiber lasers [85]. Integration at these

wavelengths can enable novel systems for high power beam combining, mode con-

verters for lower divergence beams, lithographically defined interferometric tech-
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nologies such as balanced photodetection and so much more. Utilizing Si3N4

passive waveguides is desirable for integrating devices across a broader spectral

range than anything previously demonstrated [3] or for circuits requiring low loss,

less than 0.1 dB/m at 1.58 µm [86], or the order of magnitude lower thermal drift

compared to Si. Finally, the cost of such circuits built on bulk Si can be lower

than SOI based designs.

3.2 InGaAs/GaAsP multiple quantum well lasers

on Si

InGaAs multiple quantum well (MQW) lasers were grown on GaAs and bonded

to Si3N4 planar lightwave circuits (PLCs) fabricated on a silicon substrate. The

argument for such a marriage of materials is made in Section 1.1.1.

3.2.1 Fabry-Pérot lasers

Figure 3.3 details the process flow for both the lasers and tapered mode con-

verters. Note that no Si3N4 waveguide is present under the Fabry-Pérot lasers as

the mode is confined by the III-V and AlGaAs oxidation aperture in Fig. 3.2. Also,

the tapered test structures do not have metallization or a p-mesa as the MQW

material would absorb the transmission. 200 nm of stoichiometric LPCVD Si3N4
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Figure 3.2: Laser cross-section. In bulk of the gain region, mode is entirely in
III-V so Si3N4 waveguide width reduces to zero over the course of the tapered
mode converter and the mode is guided by the AlOx aperture

is deposited on thermally oxidized Si wafers, annealed at anneal at 1050◦C for 7

hours to drive out any residual hydrogen and then patterned using DUV 248 nm

lithography on an ASML S500/300 DUV stepper and a CHF3:CF4:O2 inductively

coupled plasma (ICP) dry etch. Patterned wafers are then clad with a PECVD

SiO2 partial upper cladding and chemically mechanically polished on a Logitech

Orbis tool to planarize and achieve ∼0.5 nm RMS roughness. A gap from the

Si3N4 waveguide to the bonding surface was targeted at 200 nm with a ±50 nm

deviation measured across the 70 mm center of the 100 mm wafer. Vertical chan-

nels were etched into the SiO2 to improve bonding [87]. InGaAs / GaAs MQW

laser material grown by metal-organic chemical vapor deposition (MOCVD) is

bonded to SiO2 on Si following an O2 plasma treatment and anneal at 300◦C. The

GaAs growth substrate is lapped to ∼100 µm and then selectively etched using

a NH4OH:H2O2 (1:30) solution sprayed by a Venturi spray head which draws the
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solution and aggressively sprays it with N2 gas onto the GaAs substrate. The

solution is recycled for the 30-60min duration of the etch (depending on the final

lapped substrate thickness) without noticeable change in selectivity relative to

the 10-200 nm InGaP etch stop layer. 500-200 nm of Al0.8Ga0.2As has also been

observed to act as a sufficient etch stop, though the selectivity is less and the etch

stop is prone to oxidation post substrate removal, so it should be removed with

buffered hydrofluoric acid directly following substrate removal.

Laser p-mesas were then patterned and dry etched using a Cl2:N2:H2 ICP etch

with a SiO2 hardmask and stopped in the lower n-GaAs contact layer using a

laser monitor. The vertical channel mask was reused to open all vertical channels

(VCs) before an AlGaAs wet oxidation was performed at 365◦C in a 50 mm Lind-

berg furnace with 10sccm of N2 carrier gas bubbled through an 80◦C deionized

wafer beaker. The VCs must be reopened, because pressure in covered VCs causes

them to burst and redeposit III-V onto the sample during the anneal. The oxida-

tion aperture forms both a current and optical guide, as shown in Fig 3.3. Two

additional tapers were formed by dry etching and selective wet etching to stop

cleanly on the top of an InGaAs/GaAsP superlattice and the bonding surface.

AuGe/Ni/Au (70/15/500 nm) n-metal was e-beam evaporated onto 2×1018cm−1

n-GaAs and lifted-off, rapid annealed at 420◦C for 30s, then covered in a PECVD

SiO2 electrical isolation layer. Vias were made in the isolation and then a Ti/P-
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Figure 3.3: Process flow for Fabry-Pérot lasers and tapered mode converters.

t/Au (5/30/1500 nm) e-beam evaporation was made to 1×1018cm−1 p-GaAs and

lifted-off to form probe pads to the n-contacts. Two types of experiments were

done to prove the feasibility of the concept. First, we fabricated lasers on a ther-

mal oxide layer. Secondly, we fabricated passive III-V to Si3N4 taper loss test

structures.
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A cross-section of these devices is shown in Fig. 3.2. The key dimensions that

were varied in this run were the mesa width and length. The mesa width varied

the width of the oxidation aperture as all of the devices were oxidized at the same

time. P-mesa widths were varied from 11-13 µm. resulting in oxidation apertures

from 3-5 µm following the AlGaAs oxidation. Additional splits were made for the

p-contact width from 1.5-11 µm resulting in insignificant variation.

Table 3.1: Epitaxial layer design for Fabry-Pérot lasers

Function Material (%) Al t (nm) Doping Type

Bonding SL InGaAs/GaAsP - 72 2.7E+18 n-Si

n-Contact GaAs - 200 2.7E+18 n-Si

n-GRINSCH AlGaAs 10→30 48 2.7E+18 n-Si

Barrier GaAs - 10 UID

(3x/2x)QW/Barrier InGaAs/GaAsP - 8/8 UID

Barrier GaAs - 10 UID

p-SCH AlGaAs 30→80 88 7.5E+17 p-C

AlOx aperture AlGaAs 98 50 7.5E+17 p-C

p-Cladding AlGaAs 80 1500 7.5E+17 p-C

Grade AlGaAs 80→10 200 7.5E+17 p-C

p-Contact GaAs - 100 1.0E+18 p-C

Etch stop InGaP - 200 1.0E+18 p-C

Buffer GaAs - 500 1.0E+18 p-C

Substrate GaAs - 625000 >1E+18 n-Si

Electrically pumped Fabry-Pérot lasers were made by dicing III-V on SiO2 on

Si bars into different lengths, and polishing these to create facets. Multiple mesa

widths were fabricated to vary the width of the current channel. Confinement

factor in the quantum wells was simulated to be 0.09 regardless of aperture width.
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A p-mesa width of 12 µm with 4 µm wide current apertures had the best results

with the most working lasers, resulting in the cleanest analysis, and these data

are, therefore, presented below unless otherwise specified. Table 3.1 shows the

layers of the MQW InGaAs/GaAsP MOCVD epitaxial material pre-bonding.

Figure 3.4: CW (red) IV and (blue) LI curves of a 2400 µm long Fabry-Pérot
laser. Inset shows a cross-sectional schematic.

Continuous-wave (CW) operation was observed at 12.3◦C in a 2400 µm long

laser whose optical power-current-voltage (LIV) curves are shown in Fig. 3.4.

These devices suffer from high p-contact resistivity (>13Ω · mm at 200 mA in

4×2400 µm laser shown) and turn-on voltage (>2 V ) both believed to be due to

residual InGaP between the p-GaAs and p-metal. Additional material degradation

may be caused by the oxidation anneal evidenced by a decrease in the measured

PL intensity of bonded material before and after this anneal step.
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Figure 3.5: CW spectral output below and above the lasing threshold.

Additionally, the thermal impedance is higher in these designs than those on

a native substrate owing to the 5 µm of lower SiO2 cladding selected for better

compatibility with thin Si3N4 cores for low-loss [86]. This is shown in the inset in

Fig. 3.4.

Spectral measurements were made on the CW laser confirming the lasing peak

to be at 1073 nm, as shown in Fig. 3.6. This can be compared to a 1030 nm

photoluminescence peak at room temperature before bonding and the 1056 nm

lasing peak of the same laser under pulsed operation. From this the increase in

temperature at the junction is approximated to be 42◦C, assuming 0.5 nm/K

change in the quantum well bandgap. This puts the calculation for the thermal

impedance at 49◦C/W for this 2.4mm device. This is expectedly higher than

that reported on InP type Hybrid Silicon Lasers with 1 µm buried oxide [88].
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This is in reasonable agreement with simulations of similar laser structures in

COMSOL with 5 µm lower SiO2 cladding from Section 3.5 when you account

for mesa width and length. As a result of this self-heating, the threshold current

was seen to increase from 100mA to 163mA for pulsed and CW respectively as

shown in Fig. 3.4. Ideally, such devices would be flip-chip bonded to AlN or

other high thermal conductivity electrical interconnection boards to improve the

thermal performance, as discussed in Section 3.5.

Figure 3.6: 20◦C pulsed threshold current data for 12 µm mesas with 4 µm wide
current apertures 300◦C O2 plasma assisted bonded to 5 µm of SiO2 on Si.

Different length lasers were tested pulsed with 600ns pulses at 1 kHz repetition

rates at 20◦C to avoid device self-heating. Threshold currents below 20mA for 600

µm long lasers are shown in Fig 3.6. The internal loss was calculated by cutback

measurements for devices with 12 µm mesas and 4 µm wide current apertures

to be 6.2 cm−1. The analysis used Eq. 3.1 and the curve fit to the best devices

of each length in terms of inverse differential quantum efficiency, 1/ηd, plotted in
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Fig. 3.7 [55].

1

ηd
=

αi

ηiln(1/R)
+

1

ηi
(3.1)

The internal quantum efficiency, ηi, was calculated to be 4.5% from the cutback

analysis shown in Fig 3.7. Fig. 3.6 plots with higher and lower bounds of the data

using fitted curves assuming internal loss, αi, of 6.2cm−1 and facet reflectivity R

= 0.32 used in Fig. 3.6 . This performance may be partially owed to poor IV

characteristics. These devices suffer from high p-contact resistance.

Figure 3.7: 1/ηd plotted v. laser length with a linear fit to best devices of each
length to extract internal parameters using Eq. 3.1.

Finally, a series of aperture widths were explored to get some understanding

of the best overlap of the injected carriers and the mode. As the width of the

aperture increases so does the mode and so do the carrier profiles. Because this

is a top contact device, it is not fair to think of the pumping as a uniform profile
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Figure 3.8: Threshold current densities of pulsed laser as a function of their
aperture width.

through the aperture so simple models do not explain the relationship of threshold

current density and aperture width. Once the current passes to the n side of the

aperture, it spreads to either side of the mesa taking the path of least resistance.

In narrow aperture devices this means that the mode is not as wide as the carrier

distribution, in wider apertures, the mode may be too wide and overlay well with

the bi-modal distribution of carriers crowding both edges of the aperture. Figure

3.8 shows the current density of pulsed results for two lasers lengths, 600 and 900

µm, v. aperture widths from 3-5 µm.
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3.3 III-V to Si3N4 tapers

Device structures were measured to quantify the taper loss of adiabatic mode

converters from the low-index Si3N4 waveguide to the high index III-V device

layers. These structures were designed with a series of tapers in the III-V while

the Si3N4 maintained a constant width.

Table 3.2: Epitaxial layer designs for III-V to Si3N4 taper structures

Taper Layer Material t (nm) Index(1030nm)

N Sacrificial Layer InGaP 50 3.215

N Contact layer GaAs 250 3.503

— Taper interface — — —

SL SL Etch Stop InGaP 20 3.215

SL Bonding SL InGaAs/GaAsP 62 3.503

Simple passive structures without a quantum well mesa were made in serially

repeating test structures to isolate taper loss. A section of the layout and a zoom

in of a single device is shown in Fig. 3.9.

The 100 µm straight section was selected to match the intersection with the

quantum well mesa of a linear in-plane laser that has an oxidation aperture index

guide down the center to make the structure single mode. These test structures

however, have a multi-mode straight segment, that showed some spectral depen-

dence for some taper design splits, but only for straight lengths greater than 100

µm. Repeated test structures only showed periodic oscillations with wavelength

that are attributable to reflections cause from the III-V to Si3N4, but nothing to
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Figure 3.9: Layout of repeated taper structures with labels on key geometries.
Mask splits included length of SL taper, and length of N Taper. Taper tips ∼200
nm. Structures do not include active quantum well mesa.

suggest that the multi-mode behavior impacted the measurement. Because of the

oscillations, transmission spectra were captured over a range of wavelengths from

990-1090 nm, normalized to a transmission though a straight waveguide without

III-V and then averaged. The error in this method along with the error found

from variations in repeated measurements of identical reference waveguides with-

out III-V are represented by the error bars in the graphs and taken to be the sum

of the standard deviations of these two sources of error and are plotted in Fig.

3.10.

The measurement results indicate that the shorter n-taper lengths are preferred

to long tapers. That does not agree well with the simulations used to design this
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Figure 3.10: (a) Measured insertion loss for repeated passive III-V to Si3N4

tapers plotted by number of serial repeats of a single device. (b) Normalized
transmission spectra for (1, 2, 4, 6 & 8) repeats of lowest loss taper. (c) Taper
loss is plotted from the repeated taper data in (a) after removing bulk loss.

mask split. There is little or no measurable difference between the two SL taper

lengths selected of 5 µm and 15 µm. Additional structures with different lengths of

straight III-V sections were tested to measure the propagation loss of this segment

and remove it from the insertion loss to yield a loss of each taper plotted in Fig.

3.10(b). This propagation loss was found to be 44.5 dB/cm. Therefore, the lowest

loss taper design of 2.5±0.75 dB/taper was measured with a SL taper length of 15
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µm and an n-taper length of 5 µm. Two limits have been identified to improve this

design. First, the width of the SL taper at the start of the n-taper tip is simulated

to be more significant than previously anticipated. The selection on the mask was

3 µm with the intention of ashing back the tapers to reduce the actual device

width, however inspection post ashing was only a couple hundred nm reduced as

seen in Fig. 3.9. This parameter should be reduced in future similar designs to

improve the coupling loss. A simulated optimum value would be closer to 700

nm. Secondly, there is a loss mechanism that clearly scales strongly with length.

Future focus should be given to shorter taper designs.

3.4 Integrated DBR mirrors in Si3N4 waveguides

To make an integrated laser, there are a few options for mirrors that can be

explored. A very common choice is a distributed Bragg reflector (DBR) because

of the wavelength selection function that it adds, eliminating the need for an

intra-cavity filter. This type of mirror functions by a simple periodic perturbation

of the waveguide mode that in a first order grating has a periodicity of half a

wavelength, and scales with order such that the period is a full wavelength for

second order, 1.5 wavelengths for third order etc. as detailed in Eq. 3.2, where

m is the order λBragg, is the Bragg wavelength, neff is the effective index of the
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grating and Λ is the period of the grating.

Λ ≈ mλBragg

2neff

(3.2)

These repeated perturbations scatter incoming light with a strong wavelength

selective in-phase reflection back into the waveguide from which the light came.

An accurate theoretical analysis of DBR gratings can be made using coupled mode

theory between the forward and backward modes. This is well documented in a

number of textbooks including [55] so I will not repeat it here. I will however

include formulas from this method of derivation to be used in the analysis of the

devices measured.

Integrated DBR mirrors for heterogeneous lasers can either be placed into

the III-V by etching the III-V before conducting an aligned bond [89], etched

into the passive waveguide directly underneath the III-V [90], or outside the III-V

[91]. Of theses approaches, etched III-V devices require accurate alignment during

bonding, and gratings directly underneath the III-V are sensitive to the bonding

oxide thickness, so the most repeatable results arguably can be achieved in placing

the mirrors outside the III-V region in the passive waveguide. Additionally, in this

case the mirror thermal drift will be that of the passive waveguide materials and

not III-V, an attribute utilized for non-silicon waveguides in Section 2.4 to reduce

laser thermal drift. However, with passive DBRs additional loss will be added in

the laser cavity transitioning from the III-V gain to the passive waveguide.
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Figure 3.11: (a-b) Top and cross-section of surface corrugated gratings under-
neath bonded III-V lasers (c-d) Top and cross-section of surface corrugated grat-
ings into top cladding of passive waveguide. (e-f) Top and cross-section of sidewall
passive gratings.

Three potential grating configurations are diagrammed in Fig 3.11. The first

two use surface corrugated gratings etched into the upper SiO2 cladding. For III-V

lasers bonded on top of these gratings, air gaps can be quite a fabrication tolerant

modal perturbation for a mode in the III-V and even if the etch is deeper than

intended and punctures the Si3N4 core, the grating strength of the III-V mode is

not detrimentally impacted. This is because as the mode is strongly confined to

the III-V, the perturbation of the air compared to the SiO2 only occurs within the

first 10s of nm from the III-V surface. Also, as the gratings can be patterned on

the waveguide surface prior to bonding, no precise bonding alignment is required.
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However, surface gratings are not ideal for passive gratings (outside of III-V

regions) for two reasons that came up when developing processes for their use

in heterogeneous laser integrations. Firstly, the gratings should be placed in the

final cladding layer or they will be filled during subsequent cladding depositions.

Unfortunately, this puts this process step near the end of the entire process flow

on a wafer with high morphology and restricts the implementation of probe pad or

thermal heaters on top of the grating for tuning as the metal would fill the corruga-

tions. Secondly, if the etch actually does penetrate the core, the grating strength

sees a rapid increase with etch depth into the core and the Bragg wavelength also

shifts rapidly with the change in effective index cause by this strong perturbation.

This unintentional core etch becomes very possible if the target depth is close to

the core. Especially as CMP of the partial upper cladding before bonding adds

uncertainty to total cladding thickness and resulting etch end point. This example

of an etched core was measured to have extremely high grating strength and loss

in some test structures when first exploring these surface corrugated structures.

This is one reason we moved away from surface corrugations in favor of sidewall

gratings.

The second type of DBR mirror are sidewall gratings as shown in Fig. 3.11(e-

f). I must credit co-authors Michael Belt and Martijn Heck for the testing and

layout of the first of these structures at UCSB with 100 nm thin Si3N4 strips
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[92]. I provided testing advice, analytical support, and SEM characterization to

understand the data. I have also designed, fabricated and demonstrated such

gratings near 1 µm in 200 nm thick strip geometries but have chosen to present

the larger data set and cleaner analysis from our shared paper [92].

Figure 3.12: (a) SEM image of sidewall DBR in LPCVD Si3N4 strip with subtle
perturbation. (b) Waveguide cross-section for C-band ultra-low loss waveguide.
(c) SEM image of strong perturbation for reference to (d) a zoomed in cross-section
with shaded grating areas.
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Sidewall gratings hold the advantage of being defined in the actual waveguide

layer, so they are the first lithography step performed on a planar wafer for the

highest resolution. As the gratings are also entirely in Si3N4 and SiO2 even for 200

nm thick cores at 1 µm wavelength the first order period is in excess of 300 nm.

Therefore, it can be exposed using DUV stepper lithography. The practical limit

we have found with UCSB’s AMSL S500/300 DUV stepper (a 248 nm stepper)

is around 300 nm for a NA of 0.63. In contrast, gratings in the III-V or under as

in Fig. 3.11(a) must be exposed using holography or electron beam lithography

(EBL) as their periods fall below 300 nm.

Figure 3.13: Reflection mode test setup and corresponding characteristic spectra
for a 1mm DBR measured TE with κ = 43.2cm−1.

These devices, shown in Fig. 3.12, were measured in reflection as shown in

Fig. 3.13 and were found to have Bragg wavelengths and grating strengths that

conform well to theory so long as you account for the increased duty cycle caused

by the reflow of developed photoresist. Duty cycle is defined as the percentage

of the grating period occupied by the widest waveguide section. The reflow was
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performed to reduce total waveguide loss due to sidewall roughness. These gratings

presented were all first order and many of them exhibited a very large change with

width from the widest to the narrowest waveguide section. Rounding at the end of

wide sections was not a significant portion of the total waveguide width as observed

in Fig. 3.12(c). Therefore, a simple single cross-sectional mode simulation was

made to quantify the change in grating strength, κ. The cross-section shown in

Fig. 3.12(d) was simulated in Fimmwave with a finite element method (FEM)

model with the index of the grating region (ngr) (shaded in red and white and

highlighted by the green boxes) defined by a weighted geometric mean of the core

and cladding indices (ncore, nclad) and shown in Eq 3.3.

ngr =

√(
DC

2

)
n2
core +

(
1−DC

2

)
n2
clad (3.3)

Using this simulation technique and the index measurements from the ellip-

someter at 1550 nm (ncore = 1.988, nclad = 1.445) I was able to show duty cycle

as the primary factor causing the raise of neff with increase in waveguide width

difference, or perturbation in from the nominal waveguide width of 2.8 µm in Fig.

3.14.

Using this the effective index of this single simulation neff and the confinement

factor of the grating region, Γgr, the grating strength kappa can be expressed as

κ =
4

λ

(
ngr

neff

)2

sin(πDC)Γgr(ncore − nclad). (3.4)
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Figure 3.14: Measured and predicted grating neff for different narrow waveguide
widths (or width differences from narrow to wide). The widest waveguide width
is always 2.8 µm.

Using the values of Γgr and neff from a 2-D Fimmwave simulation the grating

strength was found also to agree very well with measurement. The relationship

of κ and stop bandwidth, BW , is expressed in Eq. 3.5.

κ =
2neffπBW

λ2
(3.5)

Figure 3.15 is a plot of these Fimmwave simulation results compared to values

derived from measurements of the reflection spectrum bandwidth. The bandwidth

was measured at the first null of the reflection spectrum.

3.4.1 Summary of integrated DBR mirrors in Si3N4

We demonstrated for the first time sidewall gratings in 100 nm thick Si3N4 pla-

nar waveguides with unperturbed loss below 5.5 dB/m over the range of 1540 to
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Figure 3.15: Measured and simulated grating strength for 1000 µm long gratings
under TE excitation. The widest waveguide width is always 2.8 µm. The plot also
gives fitted and simulated coupling constant values for the same set of gratings.

1570 nm. By this design it is possible to appodize gratings with a single etch with

coupling constants, κ, that range from 13 cm−1 to 310 cm−1 enabling lithograph-

ically tailored filter functions. These have been shown to be well simulated using

a single 2-D numerical mode solution and measured indices without additional

parameter fitting.

3.5 Limiting self-heating in heterogeneous lasers

with thick SiO2 lower cladding

There are a number of approaches to limiting self-heating of lasers with thick

SiO2 lower cladding. This section discusses a few of them, including Au thermal
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shunts in various locations and flip-chip bonding to a AlN carrier. These ap-

proaches are examined in the domain of very thick lower SiO2 claddings required

for integration with ultra-low loss Si3N4 strip waveguides, currently demonstrated

with thermal SiO2 claddings as thick as 15 µm. This analysis was conducted using

2-D COMSOL thermal heat transfer simulations.

3.5.1 Thermal impedance modeling in COMSOL

COMSOL is a finite element method (FEM) simulation tool that can perform

any number of multi-physics simulations. For the purpose of this analysis a 2-D

simulation was selected. The direction of propagation of light is assumed to vary

insignificantly. This is not strictly true for structures with tapered mode couplers,

but is a reasonable assumption for the bulk (untapered) section of the laser and

is very reasonable for a Fabry-Pérot design.

The heat generation is assumed to occur in the center of the intrinsic region

of the junction, that has the highest optical intensity and thermal effects due to

absorption, highest resistance as it is intrinsic, and the most significant heterojunc-

tion interfaces, an additional source of photon production. This is a conservative

assumption as the heat generation is actually more distributed. This is also nearly

the furthest point from heat sinks such as the contacts. Addition heat sources such

as contact resistance are ignored as their thermal energy is more readily diffused
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into the contact itself than propagate toward the junction. Therefore, simulation

results should fall on the high side of actual measurements but are believed to be

an accurate representation for the purposes of selecting an appropriate thermal

mitigation strategy.

Table 3.3: Material properties used in COMSOL thermal simulations

Material k (W/m·K) ρ (kg/m3) Cp (J/kg·K)

Au 317 19300 129

Si 130 2329 700

SiO2 1.38 2203 703

GaAs 44 5316 550

AlxGa1−xAs [93] (.0227+.2883x-.30x2)−1 8700 385

In0.484Ga0.516P [93] 14.4 4460 376

The parameters used in this model have been selected from the COMSOL 4.3a

MEMS materials library with the exception of ternaries referenced from other

sources. All are listed in Table 3.3.

All lasers thermal impedances are assumed for 1mm long in-plane devices.

Shorter lasers will have higher impedance inversely proportional to their length.

In other words results quoted inK/W could just as easily be quoted inK/(W ·mm)

and then multiplied by device length.
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3.5.2 Thermal impedance of heterogeneous lasers with thick

SiO2 lower cladding

Unlike a conventional PIC, heterogeneous lasers with thick SiO2 lower cladding

do not work well with a simple substrate thermal sink. The thermal impedance of

the oxide layer becomes increasingly detrimental to the laser performance because

it blocks the laser from draining heat through the substrate. As the simulation in

Fig. 3.16 shows, the heat tends to escape out the top contact to the air.

Figure 3.16: 5 µm wide Au shunts positioned directly under the sides of a 20
µm mesa result in a thermal impedance of 63.4 K/W .

To mitigate this in prior heterogeneous integrated lasers thermal shunts have

been proposed [94]. These have shown some improvements in very small devices

like micro-ring lasers but don’t show nearly as significant improvements in longer

in-plane lasers for buried oxide layers of 1 µm. This all changes though as you

increase the lower cladding oxide thickness beyond 1 µm
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The thermal impedance in Fig. 3.21 shows a slight sub-linear power rela-

tionship of thermal impedance with increase in lower cladding thickness. The

significance of the thermal shunt becomes very clear for thick lower claddings.

3.5.3 Thermal shunts

Figure 3.17: Different thermal shunt designs.

In order to simply use the metal already part of the unshunted laser process,

thermal vias can be used as part of the vertical channel layer and then later

covered with either probe metal or n-metal. These shunts would thus be added

post bonding and are considered a lower risk change of the process.

A comparison of the probe and n-metal shunts is provided in Fig. 3.18 some

improvement is seen in this example with a 3 µm thick lower cladding. The

unshunted thermal impedance of 63.4 K/W shown in Fig. 3.16 is reduced with

a probe shunt to 55.2 K/W . This was further improved by the use of n-metal

shunts, however the improvement over probe shunting was only seen when the

n-layer was reduced such that the n-metal shunt could be within 25 µm from the

center of the 20 µm mesa.

93



Chapter 3. III-V/Si3N4 Heterogeneous Laser Integration

Figure 3.18: Comparison of probe and n-metal shunts. N-metal shunts 1.5 µm
wide were added 25 µm from the center of the 20 µm mesa. A single 10 µm wide
probe shunt is added to the 2 µm thick p-probe and shunted 40 µm from the
mesa.

Alternatively, shunts can be added before bonding so that they may be aligned

directly under the mesa as shown in Fig. 3.19. These can be added by electo-

plating following a deep etch of the thermal via so as to fill a significant portion

of the via within limited time and without an unreasonable amount of metal

compared to evaporation. These sub-mesa shunts can be designed to have the

Au touching the III-V at the bonding interface as shown in Fig. 3.19, or a small

buffer can be added by either etching back the metal from the polished interface

or covering it with a thin layer of additional oxide that can then be CMPed

and bonded. Figure 3.20 shows a comparison of the impact of these two surface

preparations on the thermal impedance of the laser.
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Figure 3.19: 5 µm wide Au shunts positioned directly under the sides of a 20
µm mesa result in a thermal impedance of 39 K/W .

As there is an improvement over an air void by using a thin oxide layer between

the shunt and the III-V and it does not require a change to the actual bonding

interface, a reasonable thickness of 200 nm was selected to compare sub-mesa

shunts with unshunted devices. 200 nm can be achieved with CMP within a

tolerance of a few 10s of nm across the wafer. Significant improvements are seen

with this 200 nm buffer as the thickness of the lower cladding increases. A factor

of nearly 2.5× improvement in thermal impedance, Zt, over unshunted devices at

15 µm cladding as shown in Fig. 3.21.

In conclusion, thermal shunting is a viable method of reducing the thermal

impedance of devices with thick SiO2 cladding. It improves devices most signifi-

cantly when used beneath the mesa, however such shunts must be offset from the

actual guided mode so as to not add to the optical loss. However for short lasers,
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Figure 3.20: Two buffers between the shunt and the bonding interface are com-
pared, an air void and CMPed SiO2.

such as directly modulated distributed feedback lasers (DFBs) or micro-ring lasers,

this may not be enough.

3.5.4 Flip-chip bonding

One well developed process that can also be designed to improve the thermal

impedance of heterogeneous devices with thick lower cladding is flip-chip bonding.

The process uses a high thermal conductivity electrical interposer layer, typically

AlN with electrical leads to the device contacts. Au bumps, Au pillars, or other

solder balls have been used for this purpose. If the problem is examine in the limit

where the oxide thickness provides an infinite thermal barrier, the most logical

place to take the heat off is the top.
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Figure 3.21: Comparison of thermal impedance Zt v. SiO2 lower cladding thick-
ness for unshunted and shunted lasers. Two 5 µm wide Au shunts are placed on
either side of the 20 µm mesa. There is a 200 nm buffer of SiO2 between the
shunt and the bonding interface.

Figure 3.22 shows how taking the heat up and out of the mesa can be a viable

alternative to thermal shunting even for thick oxide layers. In this case the mesa

upper cladding (Al0.8Ga0.2As) dominates the thermal impedance of the device.

This ternary has significantly worse thermal conductivity than GaAs or AlAs as

shown in Table 3.3. 80% AlGaAs sees a reduction from 44 W/m ·K with GaAs

to 16.3 W/m ·K. This is very poor only gets worse when using InGaP cladding

or lower Al content material.

Restricting the design to geometric improvements wider and taller mesas can

help. Wider mesas will have increased series resistance on the n-side, which is not

appropriately captured in this thermal model. At the operating wavelength of
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Figure 3.22: Thermal simulation showing the release of thermal energy primarily
out of the mesa. Mesa is 20 µm wide with 1.520 µm tall mesa and made of
Al0.8Ga0.2As.

the lasers discussed in this dissertation ∼1 µm the cladding thickness could safely

be reduced to slightly less than ∼1 µm, but further reduction will increase the

optical loss detrimentally. This shortened mesa reduces the thermal impedance

from 36 K/W to 32 K/W . This represents the lower thermal impedance of the

designs presented.

3.5.5 Summary of thermal design

Thermal impedance simulations were conducted on 1 mm lasers in 2-D to de-

termine the best way to improve laser performance in heterogeneously integrated

GaAs type lasers with thick SiO2 lower cladding. Different types of thermal shunts

were shown using Au as the high thermal conductivity shunt material. Of these,

shunts placed under the laser mesa were found to be most effective but can not be
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placed directly under the center of the mesa or optical loss would detrimentally

impact laser performance. As an alternative to thermal shunting, flip-chip bond-

ing was simulated and showed excellent results when wide and short mesas were

used. Thermal impedance in these device approached half those with only bottom

substrate thermal sinking through 3 µm SiO2 lower cladding and were about a

third those with 15 µm SiO2 lower cladding. It is therefore suggested that future

work on lasers with thick SiO2 lower cladding include the use of flip-chip bonding

as a viable back-end thermal solution.

3.6 Conclusions of III-V/Si3N4 laser integration

A new heterogeneous integration concept of directly bonded III-V epitaxial

layers to SiO2 clad Si3N4 waveguides is presented. Continuous-wave lasing was

observed with output power of nearly 0.25 mW on InGaAs/GaAsP multiple quan-

tum well epi bonded to 5 µm of SiO2 and processed on Si as a proof of principle

towards this concept. Si3N4 waveguides were coupled to n-layer III-V taper struc-

tures to quantify the expected loss of these tapers. 2.5±0.75dB coupling efficiency

was measured. Sidewall DBR grating mirrors were also demonstrated in Si3N4

waveguides. Analysis showed good agreement with numerical simulations of these

structures. Finally, heat transfer simulations were conducted to understand the
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best ways to mitigate the high thermal impedance of thick lower SiO2 cladding.

Flip-chip bonding was determined to be the best solution when compared to using

metal thermal shunts which can not be placed too close to the optical mode and

require challenging modifications to the current working process.

Progress on many fronts towards achieving a new heterogeneous integration

platform has been demonstrated, but there is still much more to do. Additional

efforts should be focused in the domain of shorter tapers <20 µm. This was an

empirical observation which was not in good agreement with simulations of theses

structure and is perhaps one of the more valuable contributions of this experimen-

tal exploration. A process compatible with both tapered and straight III-V mesa

needs further development. The demonstrated AlGaAs oxidation process used

in this chapter was deemed not feasible as the oxidation close the tapers from

passing current and closed the guided index channel provided by the oxidized

aperture. Further details of these process pitfalls are provided in Chapter 4. The

most clear take aways from this chapter are, 1) a path toward visible and NIR

lasers integrated with Si3N4 waveguide is given, 2) a simple and accurate method

of predicting sidewall grating performance is shown, and 3) a clear direction to

focus development for lower thermal impedance. Further detailed suggestions will

be covered in the Section 5.2, Future Work.
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Chapter 4

Fabrication of Heterogeneous
GaAs/Si3N4 Lasers

4.1 Heterogeneous laser process

A simplified heterogeneous laser process flow is shown in Fig. 4.1. This is

referred to throughout this chapter in more detail. This section is simply to

provide the context for the process development presented.

Figure 4.1(a) shows the thermal oxidation of a bulk silicon wafer. One could

envision using a pure glass substrate in place of this oxidation, however the optical

quality of thermal oxide has been shown to be at least as sufficient as a pure SiO2

substrate and Si has superior thermal properties to act as a substrate thermal sink.

Starting with a silicon substrate also gives the process more access to fabrication

facilities and is lower cost.
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Figure 4.1: Process flow for Fabry-Pérot lasers and tapered mode converters.

Figure 4.1(b) is the Si3N4 core deposition. For this process we selected stoi-

chiometric Si3N4 deposited via low pressure chemical vapor deposition (LPCVD),

which is tube furnace batch process that we must order from outside UCSB. This

was found in a through literature survey of low loss waveguides to be the preferred

choice [95]. The lowest loss waveguides from this review also use thermally oxi-
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dized SiO2, further supporting this decision. This waveguide layer was annealed

at 1050◦C for 7 hours to drive out any residual hydrogen.

In order to lithographically form first order DBR gratings and lower sidewall

roughness than contact lithography, the ASML PAS 5500/300 deep ultra-violet

(DUV) stepper photo-lithography tool was selected with a positive process in (c).

The waveguide was etched using a CHF3/CF4/O2 inductively coupled plasma

(ICP) dry-etch of the core.

Figure 4.1(d) partial upper cladding deposition was performed using PECVD

at 250◦C followed by an anneal at 1050◦C for 7 hours to drive out any residual hy-

drogen. Following this a chemical mechanical polishing (CMP) process planarizes

and smooths the surface in (e). The SiO2 surface is then etched to form vertical

channels (VCs) pre-bond and bonded to the III-V layer with a thin SiO2 layer by

a 300◦C plasma assisted bond in (f).

Substrate removal of the GaAs is conducted by a spray etch from [96] dia-

grammed in (g). A PECVD SiO2 hardmask deposited in (h) is used for the mesa

etch in (i). Cl2/N2/(H2) ICP etching with a laser monitor defines the mesa and is

used to reopen the vertical channels (VCs) in (j). This step may also be performed

by etching n-tapers and the bonding superlattice (SL) layers into tapers.

Once the VCs have been opened they will not explode from the pressure in-

crease on the thin III-V during the 365◦C AlGaAs oxidation used to form the
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current aperture in (k). The n-metalization (AuGe/Ni/Au) and rapid thermal

anneal (420◦C) to alloy this contact, (l), were placed after the oxidation to avoid

any impact of the water vapor and high temperature on the metal.

The process is concluded by simply depositing a SiO2 electrical isolation, (m),

and opening vias, (n), in it to make contact with the both sides of the diode with

a thick p/probe metalization in (o).

The following sections highlight some of the sticking points in this process flow,

and the learning that was achieved in working towards heterogeneous integration

of GaAs type lasers directly on top of a Si3N4 PLC.

4.2 Bonding

”The friction of surfaces decreases with decreasing surface roughness
up to a point where the surfaces are so well polished that they stick
together with dramatically increased friction.” -Desauliers 1734

4.2.1 Background and context

Direct bonding is a very old technology that seems only recently to have been

rediscovered by the photonics industry as a viable means for heterogeneous inte-

gration. Bonding of III-V semiconductors to silicon have been previously demon-

strated by UCSB using low temperature plasma assisted bonding [87]. Additional

considerable efforts have been made in by UGhent/IMEC, Einhowen, Intel Cor-
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poration, CEA-DRT/LETI, Hewlett Packard, and others [97], [98]. There have

also been efforts by A*STAR and Northwestern University to directly bond InP

to Si3N4 using a low temperature process similar to the UCSB plasma assisted

bonding process [99]. To date the main focus of these efforts has been on InP

based materials.

This work focuses on GaAs based materials and integration with waveguides

clad by SiO2. I will summarize the methods used and why they apply to applica-

tions in heterogeneous integration of GaAs type lasers to SiO2 clad waveguides.

Then I will give an overview of the key experimental results I have made in ap-

plying the technique to GaAs type laser epitaxy bonding.

Table 4.1: Coefficients of thermal expansion (CTE) of substrate materials

Material linear CTE (×10−6/K) [Ref.]

SiO2 .55 [61]

Si 2.618 [59]

InP 4.6 [100]

GaAs 6.4 [100]

GaP 5.9 [100]

InAs 5.2 [100]

The great majority of bonding processes either require an anneal post contact

or see a greatly increased bonding strength post-anneal. For this reason, it is ideal

to match the coefficients of thermal expansion (CTE) of the two substrates so that

the anneal does not put unnecessary thermal stress on the bonding interface as the
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bonded sample is cycled in temperature. However, the very aspect which makes

heterogeneous integration appealing is the marriage of different materials. So you

can’t have both a matched CTE and two material systems integrated together.

Table 4.1 shows the linear CTE of some common substrates for PLCs and III-V

photonics. From this table two things are clear. If we would like to integrate

a SiO2 clad waveguide with a GaAs type laser, it is preferred that the SiO2 be

grown first on Si to get the higher CTE, and that there will be more than a factor

of 2 difference in thermal expansion between the two substrate. Comparing this

with the InP/Si mismatch we see an increase of nearly 40%.

This difference has not been shown to be prohibitive as demonstrations of

bonded GaAs to Si using spin-on-glass, an intermediate layer cured by a 200◦C

anneal, have been made by Alexe et al. [101] and Dragoi et al. [102]. Similar

results have even been reported with fabricated lasers on SOG on Si [38]. These

showed similar bonded and unbonded laser threshold current and slope efficiencies.

Direct bonding to SiO2 on Si was also demonstrated followed by a SmartCut style

He implantation and GaAs substrate removal [103]. Most recently GaAs bonding

directly to Si has even been shown to form an ohmic electrical junction [104].

Emboldened by these past successes we designed a first epitaxial layer stack

to test our bond and substrate removal process steps.
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4.2.2 Design decisions

Laser material with InGaAs quantum wells was grown using MOCVD. Aspects

of this design which are important to bonding are the selection of a substrate

removal etch stop layer, superlattice (SL), and bonding interface material. The

SL blocks dislocations generated near the bonding interface from propagating to

the quantum wells. The thermal expansion and lattice mismatch of the bonded

epitaxy and host substrate are the source of these dislocations. The bonding

interface material is important to the chemical bond formed. However, perhaps

more important than what material, is it’s roughness.

MOCVD growth was selected for its affordability and quality. Commercial

growth of InGaAs quantum wells is well established and the defect density, par-

ticularly large defects which impact bonding, was found to be low enough so as

to achieve sufficient yield for demonstration of hundreds of devices per bond. In

designing the layers for these structures, the etch stop layer was a critical decision.

Multiple layers where used successfully including Al0.8Ga0.2As (thickness = 500

nm) and lattice matched InGaP (with thicknesses ranging from 200-10 nm). In

both instances a spray etch [96] of NH4OH:H2O2 (1:30) was used with selectivities

reported greater than 1,000:1 for GaAs from the etch stop layer. Etch rates of the

substrate ranged from 1-3 µm/min. Given that the InGaP etch stop in some cases

was 10 nm, and that it often took many minutes to remove the most stubborn
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and non-uniform remnants of GaAs from the etch stop layer, there was nothing

to suggest that for InGaP the selectivity was not nearly infinite.

Figure 4.2: Photograph of spray etch setup as adapted from the setup in [96].

The bonding superlattice (SL) was an important element in the epitaxial de-

sign. Firstly, a strained SL has been proven to improve performance in photodetec-

tors (PDs) by reducing dark current attributable to bonding induced defects [105].

Secondly, the surface roughness of our samples was found to be related to the se-

lection of SL. Strained SLs made by an alternate stack of 7.5 nm InGaP (±1%

strain) were grown. The surface roughness of these highly strained designs was

measured to be 2.8 nm by atomic force microscopy (AFM). To determine the

source of the roughness, the SL was removed by selective wet etching and remea-
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sured. The n-GaAs contact layer beneath the SL was found to have roughness less

than 1 nm. This proves that the origin of the roughness was the strained InGaP

material. Figure 4.3(a) show the AFM scan of this sample before bonding.

Figure 4.3: AFM scans of SL surface before bonding; (a) initial growth with
InGaP SL (2.8 nm RMS) resulted in unsuccessful bonding; (b) second growth
substituting the InGaP SL with InGaAs/GaAsP (1.1 nm RMS) resulted in suc-
cessful bonding.

The roughness of the strained InGaP is attributable to a bifurcation of the InP

and GaP binaries that is often observed in MOCVD growth of InGaP. In contrast

to the ±1% InGaP SL, a strained ±0.5% SL of InGaAs/GsAsP was selected for

the next epitaxial layer design. This was also two repeats of 7.5 nm layer pairs.

A reduced surface roughness on the order of 1 nm, or comparable to the surface

roughness of the layer grown directly before the SL, was measured and is shown

in Fig. 4.3(b).

109



Chapter 4. Fabrication of Heterogeneous GaAs/Si3N4 Lasers

InGaAs/GaAsP growth was done on 10◦ offcut [100] GaAs wafer, which was

also shown to have a slight improvement on roughness when compared to samples

with 2◦ and no offcut from the same vendor. Both the higher strain and material

choice were critical to decreasing surface roughness, therefore a ±0.5% strained

InGaAs/GsAsP SL is suggested for future development as it resulted not only in

lower surface roughness, but superior bonding yield.

Bonding yield after substrate removal went from on the order of 10-20 percent

with ±1% strained InGaP SL to more than 90 percent with clean ±0.5% strained

SLs of InGaAs/GsAsP. In all cases, the selection of pieces of epi had low bond

yield. The rounded edge of the wafer failed to bond due to a combination of

increased surface roughness as measured by AFM higher defect density and the

unlevelness to the rest of the wafer. Wafer levelness is critical to uniform contact.

Even under a pressure of 3 MPa, a large area of unbonded material occurs repeat-

ably at the very edge of die which still has a rounded edge from the original wafer

they were diced out of.

The actual selection of the bonding interface and its preparation are very

important. We tried epitaxial samples with GaAs directly bonded to thermal

and PECVD SiO2 and GaAs with PECVD SiO2 directly bonded to thermal and

PECVD SiO2. All bonding was done using the same plasma assisted bonding tech-

nique outlined in [87]. GaAs directly bonded to both thermal SiO2 and PECVD
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SiO2 often failed even to achieve a spontaneous bond, sliding off the bonding

surface post anneal. Results of the GaAs/SiO2-SiO2/Si were far superior and

comparable to those found on GaAs/SiO2-Si. These oxide-to-oxide bonds agreed

with prior published results in [106] suggesting that no significant contribution

due to thermal expansion mismatch exists for GaAs-Si compared to InP-Si low

temperature plasma assisted bonding. Therefore, oxide-to-oxide bonding was the

preferred choice.

PECVD SiO2 on the Si side is one method for heterogeneous integration with

Si3N4 strip waveguides, as is the case with partial upper claddings of waveguides

fabricated on Si.

Figure 4.4: Roughness from AFM scans of Si with different thicknesses of SiO2

deposited with the Unaxis PECVD 100◦C UCSB standard recipe. Inset shows
typical topology of SiO2 on Si.
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As seen on Fig. 4.4, surfaces prepared with thick PECVD SiO2 were found to

have roughness in excess of 1 nm, a reasonable target for surface roughness with

high-quality bonding. Additional deposition enlarges existing grains of SiO2 in-

creasing roughness, rather than filling in-between existing grains and maintaining

or decreasing roughness. The rate at which the roughness increased depends on

the PECVD system used. This is not an issue for the film deposited on the III-V

epitaxy which is 50 nm or less, so long as the initial roughness of the epitaxy

was small. In the instance of the ±1% strained InGaP SL where the roughness

exceeded 1 nm additional PECVD SiO2 only increased the problem.

However, an entire 75mm wafer of ±1% strained InGaP SL epitaxy was de-

posited with 200 nm of PECVD SiO2 and then chemical mechanical polished

(CMPed) to 0.5 nm RMS roughness. This method was able to reclaim some of

this material previously thought to be worthless because of high roughness.

To achieve planarization via a CMP process, Fig. 4.5(e), the density of features

on the mask is critical. There are two basic approaches to device layout for the

waveguide layer, dense layout and sparse layout. A common approach for dense

layout is to increase the density of open areas with dummy patterns as proposed

in [107]. This works well for electronics where the interaction distance between

devices is small, but for photonics, particularly for PLCs with large optical modes

that interact even with many µm of separation, such as the ultra-low loss Si3N4
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Figure 4.5: Simplified process flow diagram from bulk Si oxidation through
bonding and substrate removal.

platform [86], this is not an option. For the buried channel Si3N4 waveguides used

in Chapter 3, we selected a sparse approach and reduced the size and proximity

of features as much as possible. The planarity of the sample was compromised by

the height of the waveguide (nominally 200 nm in reports from this work). There-

fore the SiO2 partial upper cladding was CMPed to produce both a planer and

smooth surface for bonding. This process requires the use of two polishing pads

on the Logitech Orbis CMP tool. The first pad (IC1000) is a self-adhesive hard

polyurethane impregnated polyester felt pad with concentric trenches patterned

into it mounted to the tool’s iron platen. This pad provides efficient planarity

of SiO2 without removing an excessive amount of material. From empirical ob-

servations, a factor of 3-4 times more SiO2 than the waveguide etch step should
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be deposited as partial upper cladding to planarize features as diverse as 500 nm

narrow waveguides and 20 µm profilometer test mesas. As the majority of the

waveguide layer was etched, problem areas of planarization were limited to areas

of dense features, such as spiral 800 nm waveguides with more than ten guides

spaced 4 µm between adjacent guides, and wide features such as alignment marks

and the 20x60 µm rectangular profilometer mesas spaced by 20 µm. Once the

planarization polish is completed and the slurry is thoroughly rinsed from the

sample, a profilometer scan across a dense features is done to determine if the

planarization is complete. Empirically, we settled on 15 nm as the step height

that must be achieved before the second polishing step could be initiated.

The surface roughness following the planarization polish typically was mea-

sured in AFM to be >2 nm RMS. A second soft black pad was used to reduce

this. The soft black OCON-357 Chemcloth polishing cloth is also self-adhesive to

a large iron platen and was measured to smooth SiO2 from up to 5 nm RMS to

less than 0.4 nm RMS as measured in the AFM. It also planarizes but has worse

uniformity and consumes more material than the IC1000 pad.

Finally, following the CMP surface preparation, vertical channels (VCs) are

etched into the oxide surface, Fig. 4.5(f). These channels were and empirical

discovery at UCSB by John Bowers’ group. Dubravko Babic made initial obser-

vations of the impact of long waveguide channels on bonding quality of InP. Later
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Di Liang showed smaller ”vertical channels” to improve bonding performance of

plasma-assisted InP to Si bonding [87]. In this work GaAs/SiO2-SiO2/Si bonds

also improved with the addition of vertical channels into the SiO2 surface implying

that the void is more fundamental than any outgassing into SiO2.

(a) (b)

Figure 4.6: (a)Microscope image of the original placement of VCs under thin
n-contact material. (b) Microscope image following a high-temperature process
with a full thin n-layer. Most VCs burst and redeposited material onto the sample.

One observation in working with VCs was that there is a risk placing them

underneath III-V regions that are less than a few hundred nm thick. The thin

III-V layer will be fragile suspended membranes. It was observed in processing

AlGaAs type material that significant bubbles would form as shown in 4.6(a) under

the III-V containing the n-contact layer. If these bubbles are subsequently placed

into a high-temperature process such as the AlGaAs oxidation furnace, they will

likely burst and redeposit on the sample in another location. Therefore, though

subsequent processes used VCs, their size was reduced and density increased to
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provide a similar volume of void and proximity, without placing them directly

underneath the devices. Furthermore, processes order was adjusted to place the

higher temperature processing after the devices were reduced to small islands of

material on SiO2 as shown in Fig. 4.7.

Figure 4.7: Selective placement of vertical channels was made to prevent them
from expanding into bubbles and possibly exploding during high-temperature ox-
idation or contact anneal processes.

4.2.3 Bonding results and conclusions

Bonding tests were conducted on GaAs(epi)/SiO2-SiO2/Si and GaAs(epi)-

SiO2/Si using the process described in 4.2. Both bonds worked after substrate

removal with high yield and limited bonding failure either attributable to local-

ized growth defects, particles or edge effects from the edge of the epitaxial wafer.

However, perhaps the best test of all, continued device processing revealed that

the GaAs(epi)/SiO2-SiO2/Si had substantially less flaking and epitaxial redepo-
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sition than GaAs(epi)-SiO2/Si. This is a small statistics observation, however

given that the SiO2 can be also used to smooth rough epitaxial surfaces, direct

GaAs(epi)/SiO2-SiO2/Si bonding was selected as the process of choice.

4.3 AlGaAs mesa etch development

Very critical to the development of an in-plane laser is an etch of the semi-

conductor mesa. In the case of the heterogeneous lasers tapered mode converters

are required, so a dry etch is necessary given the thickness of the top cladding.

Dry etching using an inductively coupled plasma (ICP) system enables tailoring

the etch to achieve smooth etched surface, vertical sidewalls, and uniform etch-

ing rate, both locally by avoiding ”trenching”, a sharp increase in etch rate at

the side wall of an etched feature caused by charge build up on the walls of the

etched surface and mask, and globally so as to maintain a consistent end point

for future process. This end point detection was conducted using a laser monitor.

Development was conducted on multiple ICP tools in the UCSB nanofab.

4.3.1 AlGaAs ICP etching in the Unaxis VLR system

As the standard in-house process had strong trenching and poor verticality,

a process on the Unaxis ICP etch tool was developed first. Extensive develop-
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ment was done on a Cl2/N2/H2 etch which resulted in 150 nm/min, vertical etch

without trenching as shown in 4.8(a). The hydrogen was added to passivate the

charging that caused the trenching.

Figure 4.8: SEM cross sections of Unaxis ICP AlGaAs etches. (a) Initial house
Cl2/N2 recipe. (b) Developed Cl2/N2/H2 recipe.

Additional parameters were optimized to improve selectivity of the PECVD

SiO2 hardmask. The final selectivity was 50:1.

This process worked very well for the first batch of InGaAs/GaAs quantum well

FP lasers discussed in 3.2.1. Unfortunately, over the course of this work issues with

this etch chamber required it to undergo repair to remove the Al heating element

that maintained a constant temperature on the top electrode. The replacement

was a mechanical dummy piece which left the tool no longer able to regulate

the temperature of the top electrode. The unfortunate result from this was that

the etch development was lost as the Cl2/N2/H2 process grassed profusely with

the new lower steady state top electrode temperature. Attempts were made to

118



Chapter 4. Fabrication of Heterogeneous GaAs/Si3N4 Lasers

resolve this with a long oxygen clean pre-process which raised the temperature of

the top electrode back up closer to the original 80 ◦C removed the grass, but lost

both the selectivity and verticality of the etch. After extensive recalibration, the

grassing was eliminated, however the selectivity never recovered, and the tool was

abandoned for this process.

4.3.2 AlGaAs ICP etching in the Panasonic ICP system

In early 2014, a laser monitor was added to the Panasonic E626I (ICP#1)

etching tool. This enabled endpoint detection that is a requirement for good etch

control. The existing etch for this tool is Cl2/N2, only subtle adjustments were

made to this process to bring the selectivities and verticality into spec. The final

process is Cl2/N2 (20/10sccm) PICP=500W, PCCP=35W, 0.25Pa.

Figure 4.9: SEM images of Panasonic E626I ICP AlGaAs etches in cross section.
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The ICP#1 Cl2/N2 etch was also selective to InGaP lattice matched to GaAs

by a ratio of ∼7:1 which makes InGaP a convenient etch stop indicator as well as

selectively removable from GaAs with HCl based wet etches.

4.3.3 AlGaAs mesa etching results and conclusion

Small variations in the dry etch rate across both a single die and multiple

bonded die on a wafer required that a well controlled highly selective wet etch be

used. H3PO4:H2O2:H2O (3:1:50) was used for this purpose. With an etch rate of

∼100 nm/min for GaAs and similar though not well quantified rates for InGaAs,

GaAsP, and AlGaAs. This etch was found not to detrimentally undercut critically

sharp tapers with tips <200 nm.

In conclusion, a process of dry followed by wet etching was developed which

provides a uniform etched surface with vertical sidewalls for critical features such

as tapers without significantly distorting the intended pattern by undercutting or

flaring out the base of the mesa on critical features. Additionally, only a slight 10

nm/min etch rate of SiO2 was observed during dry etching that is manageable for

unprotected waveguides in unbonded areas if there is a few hundred nm of SiO2

partial upper cladding above the core.
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4.4 Oxidation of bonded AlGaAs epi

During the development of this process, numerous patent applications have

been filed for VCSELs heterogeneously bonded to silicon [108–111]. These often

overlook the fact that a high temperature AlGaAs oxidation process is funda-

mental to successful AlGaAs VCSEL current apertures and is typically done at

temperatures in excess of 400 ◦C. In this work we have developed a process for

oxidation at 365 ◦C without observing mechanical damage to the bonding inter-

face so long as VCs containing pockets of gas are uncovered before this process as

discussed in 4.6.

4.4.1 Oxidation results of bonded AlGaAs

AlGaAs oxidation apertures are used both for current guiding and index guid-

ing in heterogeneously bonded InGaAs multiple quantum well lasers. This also

enables the guided mode of the laser to be offset from high surface recombination

of the etched p-mesa sidewall while maintaining a wide mesa for improved ther-

mal dissipation compared to a narrow p-mesa structure as the mesa is the ideal

place to dissipate heat in a packaged device, detailed further in Section 3.5.4. The

aperture is formed by hydrolysis, or thermal wet oxidation, of high Al content

Al0.98Ga0.02As to form a layer of Al2O3.
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Al2O3 both has a substantially lower refractive index than AlGaAs, 1.6 [112],

and is a sufficiently wide bandgap to act as a current block in the p side of

the AlGaAs cladding. This style of thin current and optical aperture is well

known in vertical cavity lasers but is less used for in-plane devices though the

first observations of the effect reported by Dallesasse and Holonyak [113] were of

in-plane devices. The reason for this is that exposed facets of Al0.98Ga0.02As are

not stable over time. However, the objective of this design, similar to the Silicon

Hybrid Laser is to have no exposed facets to avoid this issue.

Figure 4.10: (a) SEM image of bonded (cladding on top) mesa oxidation profile
from Epi 1. (b) SEM image of unbonded (cladding on bottom) test mesa oxidation
profile from Epi 3. (c) Measured AlGaAs oxidation extents over a range of times
for 3 epi with two different aperture layer designs.

Oxidation was performed at the relatively low temperature of 365 ◦C by loading

onto a quartz boat freshly removed from a three zone 50mm Lindberg tube furnace

fed with 10 sccm of nitrogen. The samples are measured on unbonded freshly

Cl2/N2 dry etched pieces rinsed in water, stripped in 1165(80 ◦C), and rinsed
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again in isopropanol. Data is plotted over a range of times initiated after the boat

is slowly placed into the center of the furnace over the course of 1 minute and the

nitrogen carrier gas is diverted through a bubbler system in an 80 ◦C deionized

water beaker. This forces steam into the tube. The steam activates the process

so the end time is declared when diverting the flow of nitrogen back to bypass

the bubbler and flow freely into the tube. The sample is then unloaded over the

course of 1 minute and let cool in ambient. Results are shown in Fig. 4.10. Any

differences between the oxidation rate of unbonded calibration samples and the

bonded actual samples fell within the noise of the data collected.

Table 4.2: Epitaxial layer designs for oxidation apertures

Epi 3 & 3A Epi 1

Layer Material Thickness (nm) Thickness (nm)

Cladding Al0.8Ga0.2As 1000 1000

Al0.1Ga0.9As

Graded transition ⇓ 50 NA

Al0.9Ga0.1As

Oxidation buffer Al0.9Ga0.1As 10 NA

Oxidation layer Al0.98Ga0.02As 50 50

Oxidation buffer Al0.9Ga0.1As 10 NA

Al0.8Ga0.1As

Graded transition ⇓ 80 80

Al0.3Ga0.7As

The process appears to be diffusion limited rather than reaction limited judging

from the quadratic relationship of extent with temperature most clearly visible
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in the Epi 1 data in Fig 4.10(c) [114]. A more rapid oxidation in Epi 3 and 3A

is due to a modification in design detailed in Table 4.2. The intent of the design

change in Epi 3 and Epi 3A is to provide a thicker more well defined aperture

with a square cross section. This was achieved and can be seen by comparing Epi

1 Fig. 4.10(a) to Epi 3 Fig. 4.10(b). There is a triangular profile of Al2O3 in Epi

1 which is due to the oxidation of the 80% Al cladding layer along with the 98%

Al front. This occurs in Epi 3 however the triangular profile forms more slowly

and is, therefore, offset from the oxidation front forming the aperture because of

the addition of the graded transition between the cladding and oxidation layer

detailed in Table 4.2.

The oxidation front can also be viewed in Nomarski mode of a microscope,

as in Fig. 4.11. This is visible though the cladding remains opaque due to an

increase in volume of Al2O3 replacing Al0.98Ga0.02As. This pushes the surface to

form a subtle step. Measurements done in the microscope were confirmed to agree

with measurements done by SEM.

4.4.2 Selective area AlGaAs oxidation

The oxidation studies presented in the literature have typical of developed for

VCSELs and perhaps only unique in that the oxidation was applied to bonded

epitaxy on SiO2 on Si. However, in order to use oxidation with a linear in-plane
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device a requirement for a tapered mesa structure is the appropriate termination

of the oxidation aperture. The issue is diagrammed in Fig. 4.11.

Figure 4.11: Example of selective area oxidation of a wide mesa device with
unwanted oxidation observed in the tapered section which is covered with a pro-
tection dielectric.

As shown in Fig. 4.11 the taper can easily oxidize closed preventing electrical

pumping of the quantum wells in the taper tip furthest away from any diffused

carriers which enter the wells at the aperture. Some literature has been published

showing that oxidation is inhibited by adding a diffusion blocking layer to limit the

steam and other reactants from reaching the Al0.98Ga0.02 and form an oxidation

front into the semiconductor [115]. This is commonly done to the top DBR stack of

Al(Ga)As/GaAs DBRs by a complete encapsulation of the etched DBR. However,

when part of the mesa is exposed as in Fig. 4.11, an interesting and vexing
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phenomenon was observed. When part of the sealed mesa is opened to define

the origin of the oxidation front, and part of the mesa remains sealed to prevent

oxidation, as the front reaches a section that is protected an accelerated oxidation

occurs along the edge that is protected. This causes devices to appear as if it is

wholly unprotected as shown in the half protected mesa in Figure 4.12.

Figure 4.12: Nomarski mode image of round test structure mesas including one
with no protection, one with half protection and one that is fully protected of 90
nm PECVD silicon nitride and 30 nm ALD Al2O3

The source of oxidation in protected regions on a partially exposed mesa has

been found to be a one of two things depending on the condition of the sample

during oxidation. 1) Voids or edge effects which enable enhanced transport of

gases along the edges. 2) Diffusion through the protection layer of byproduct

and/or reactant gases such as hydrogen that interact with the oxidation front. A
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number of molecules could be involved. Below is a list of the molecular analogs

for the hydrolysis process and their respective Gibbs free energies, ∆G.

2 AlAs+ 3 H2O(g) = Al2O3 + 2 AsH3, (∆G = −451kJ/mole) (4.1)

2 AlAs+ 4 H2O(g) = AlO(OH) + 2 AsH3, (∆G = −404kJ/mole) (4.2)

2 AsH3 = 2 As+ 3 H2, (∆G = −153kJ/mole) (4.3)

2 AsH3 + 3 H2O = As2O3(l) + 6 H2, (∆G = −22kJ/mole) (4.4)

As2O3(l) + 3 H2 = 2 As+ 3 H2O(g), (∆G = −131kJ/mole) (4.5)

2 AlAs+ 3 H2O(g) = Al2O3 + 2 As+ 3 H2, (∆G = −604kJ/mole) (4.6)

2 AlAs+ 4 H2O(g) = AlO(OH) + 2 As+ 3 H2, (∆G = −557kJ/mole) (4.7)

In the case of the half protected mesa in the middle of Fig. 4.12 a large void

that ran along seemingly the entire mesa edge was found. This void is shown in
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the focus ion beam (FIB) cross section in Fig. 4.13(a). FIB cross sections are

courtesy of Daryl Spencer.

Figure 4.13: Comparison of FIB cross sections in adjacent mesas labeled in
Fig. 4.12 and placed in the inset of each SEM image. (a) Shows oxidized area of
protected feature of mesa and a 1 µm void at the oxidation layer. (b) Shows an
entirely protected mesa with no signs of oxidation at all and no void.

The void is believed to have developed during wet processing of the oxidation

window revealing the Al2O3 etchant which is AZ 300 MIF developer, containing

2.38% tetra-methyl ammonium hydroxide (TMAH) an etchant of Al containing

materials.

The second reason for unwanted oxidation in protected regions is believed to

be either the diffusion of gases through the protection layer which interact with

the oxidation front to cause an accelerated oxidation process which is localized

along the edge of the mesa, or simply an accelerated transport of reactants (to
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and/or from the oxidation from) along the side-wall. To illustrate this Fig. 4.14

shows two simple geometries which have been partially protected with 30 nm

ALD Al2O3 and 90 nm of PECVD Si3N4 with 30 nm ALD Al2O3 on top in the

round structure and just 120 nm ALD Al2O3 in the rectangular mesa. In both

cases with 120 nm of dielectric protection, there is are sections of protected mesa

that show no oxidation however the extent to which oxidation occurs relative

to the closest unprotected edge is greater than the extent perpendicular to the

unprotected edge. This is clearest in Fig. 4.13(b) where the extent of oxidation

along the side wall is five times that in towards the mesa center.

Figure 4.14: Exponential oxidation tails are observed in protected mesa sections

The use of different sized windows in the oxidation protection layer, as shown in

Fig. 4.11, were not able to both prevent oxidation of the taper tip and make a clean

transition from the linear current channel to a pumped taper, so an alternative

was attempted. In Fig 4.15, fully protected mesas have deeply etched trenches

added to them to provide an exposed sidewall for oxidation. The purpose of these
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trenches is to reduce the time of the oxidation and thus capacity for accelerated

oxidation on the edges to close the taper tips.

Figure 4.15: Oxidation trenches are shown not to prevent oxidation of taper
tips.

Figure 4.15 not only shows the failure of these oxidation trenches to prevent

the taper from closing but that the oxidation extent measured from any point

on the taper is more than twice that measured from any point on the oxidation

trench.

4.4.3 Conclusion of oxidation of bonded AlGaAs epi

It was reasoned that accelerated oxidation on mesa edge prevents both a clean

linear current aperture down the center of the mesa and a smooth transition
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from that mesa to a pumped taper. From the empirical observations over numer-

ous attempts to achieve this goal by means of oxidation windows and oxidation

trenches, it was concluded that alternative means of current and index guiding,

such as shallowly etched III-V mesas, should be pursued.

4.5 Taper tip reduction

Figure 4.16: Analysis of transmission through tips in 3 layer taper from III-V
to Si3N4. (a) Side view of each tip and the simulated layer thicknesses. Indices
can be found in Table 3.2. (b) Transmission for each taper and the product of all
of them plotted vs. the taper tip width.

Figure 4.16 provides a convincing argument for pursuing very fine tapers to

overcome the large effective index mismatch between the Si3N4 passive waveguide

and III-V components. Parameters that are not swept here which are worth noting

are the selection of each of the layer thicknesses. A thin SL/bonding layer is very

significant for the first transition. However, the thinner this becomes the thinner
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the n-contact layer above it should be to prevent the second taper transition, the

n-taper tip, from dominating the transmission loss. The contact layer thickness

is also selected for low series resistance, so the sum of N and SL layers should

be greater than ∼>200-300 nm assuming reasonable dopant levels for low optical

loss. At these thicknesses, the final taper from the p-mesa to the n-layers is

typically not the dominate transmission loss point as in Fig. 4.16(b).

The sub-200 nm taper tips suggested by this simulation study are much less

than those we have used in prior Hybrid Silicon Lasers, so additional development

efforts were required. The most promising of these are presented in this section.

The first uses the GCA 6300 i-line Autostepper which is capable of 500 nm taper

tips with sub-200 nm alignment accuracy on well leveled samples.

4.5.1 I-line bi-layer process

In order to reduce the feature size of tapered patterns using the GCA 6300

i-line Autostepper an adaptation was made from the bi-layer lift-off process which

utilizes the difference in exposure and development properties of a PMGI (SF-11,

or SF-15) underlayer with i-line photoresist (PR) (SPR955-0.9, etc.). Figure 4.17

shows the process flow by which a hardmask and epitaxial layer structure are

patterned using this bi-layer pattern reduction.
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Figure 4.17: Process flow to reduce feature sizes by over developing a PMGI
under layer.

In Fig 4.17(d) a standard i-line photolithography and development is made.

This only partially develops the PMGI underlayer. In order to make a controlled

undercut the rest of the PMGI is DUV flood exposed, masked by the i-line PR,

and developed with a second developer which will not dissolve the i-line PR. This

process may take a few cycles and I found that fewer, longer cycles gave slightly

more control and a better result as characterized in the microscope.

For example, in Fig. 4.18, two samples with initial patterns in SPR955-0.9

i-line PR similar to Fig. 4.18(a) were undercut and then stripped to leave only

the PMGI below shown in Fig. 4.18(b-c). These represent a split in repeated flood

exposure development cycles. Figure 4.18(b) had six PMGI DUV flood exposure

development cycles, while (c) had only three 4min flood exposures. The resulting
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Figure 4.18: (a) Initial taper tip width from SPR955-0.9. (b-c) CUV microscope
images of the split in final tapered PMGI patterns post-process. (b) 6x2min
exposure, 3x60s develop (c) 3x4min exposure, 3x60s develop. Figure insets are
visible microscope images.

pattern in (b) shows a slightly wispier tip than (c), but both (b) and (c) have

significantly reduced taper tip widths from the original pattern (a).

In summary, a taper tip reduction process is shown using a bi-layer PR process

in which the top (i-line) layer is selectively stripped following development of the

(PMGI) underlayer. This enables i-line lithography, previously resolution limited

to 500 nm, to achieve taper tips <200 nm.
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Detailed Bi-layer Taper Tip Reduction Process

1. ACE,ISO,DI,PEII(O2 Plasma)

2. Deposit oxide hardmask in PlamsaTherm PECVD 200 nm

3. ACE,ISO,DI,PEII(O2 Plasma)

4. Dehydration bake 110 1min

5. Spin SF-11 (4krpm, 30sec)

6. Hotplate Bake (200C, 2min)

7. Spin SPR955.9 (3krpm, 30sec)

8. Pre-exposure bake 95C, 90s

9. Autostepper Exposure = 0.42s, Focus = +10

10. Post-exposure bake 110C, 90s

11. 40s Develop in MIF726

12. (repeat)DUV flood expose (2-5min), Develop (SAL-101A, 1-2min)

13. ACE soak 5min - to strip SPR955.9 from PMGI

14. 30s (100W,300mT) PEII O2 descum
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4.5.2 DUV ash-back taper process

Figure 4.19: Characteristic p-mesa tapers following Cl2/N2 dry etch with SiO2

hardmask and H2SO4:H2O2:H2O (1:1:10) wet etch. (right) measurement of hard-
mask taper tip width is 147 nm.

As taper tip widths decrease, alignment becomes more critical. The ASML

PAS 5500/300 DUV stepper both has finer feature sizes and tighter alignment

tolerance than the GCA 6300 i-line stepper. Alignment on the ASML tool is

specified at 50 nm compared to 200 nm on the GCA. As the first taper is applied

post-bond, and the epitaxial III-V membranes add >2 µm steps to the surface of

the wafer, UV-6 DUV PR spun on at 1.5krpm (1 µm) without additional anti-

reflective coating (ARC) layer is required to obtain sufficient coverage. Using this

thick resist, we have reliably been able to achieve taper tip widths ∼300 nm with

the same sized mask feature. Narrower tip patterns are more sensitive to leveling

and focus, and are not achievable without thinner resist.
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Figure 4.20: Microscope image of fabricated three layer taper with fine well-
aligned taper tips using the DUV ash-back taper process

However, PEII (100W, 300mT) O2 plasma applied post-development for 90s

was shown to reduce the taper tip widths repeatably below 200 nm. This pattern

is easily transferable to a SiO2 hardmask and the p-mesa with subsequent dry

etching as shown in Fig. 4.19.

This simpler ash back process was implemented for the results presented in

Chapter 3 for its higher alignment precision and repeatability. The same process

applied to p-mesa, n-taper, and SL-taper achieved similar results. Figure 4.20

show one result from a series of three layers formed with this process.
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Summary and Future Work

5.1 Summary and conclusions

This dissertation presented an argument for heterogeneous integration on bulk

Si rather that with SOI by use of non-silicon waveguides and active semiconductor

components placed by selective area bonding. Appropriate selection of waveguide

materials, such as TiO2 can even make it possible for these circuits to be ather-

malized well beyond conventional circuit designs. This integration will enable

uncooled operation in compact packages for lower life-cycle cost and the perfor-

mance enhancements of integration. A path towards this vision was provided by

demonstrations of a series of components including, bonded lasers at 1060nm, ta-

per transitions from GaAs to Si3N4, sidewall DBR gratings in Si3N4, and thermally

insensitive passive ring structures using TiO2 with ∼pm/K thermal drift.
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5.1.1 Athermal devices and designs on Si

Following a review of the literature it was concluded that athermal packag-

ing solutions do not exist for PICs with diverse and dispersed components and

that individual athermal device designs are preferred. For these individual de-

vice designs, circuit based and material based approaches are considered. Circuit

based solutions are an excellent selection for FIR filter functions such as MZIs

and AWGs. The underlying principle of maintaining constant phase differences in

these interferometric devices is well-explained in the literature, and specific device

designs would be platform specific. Therefore, much of the Chapter 2 was devoted

to materials based approaches, specifically with TiO2, an inorganic CMOS com-

patible negative TOC material. Details such as sensitivity of this material to

thermo-stress-optic effects and higher order TOC behavior which will be the ulti-

mate boundaries confining future design of these structures were covered. These

details should be considered in future work with this material.

It was concluded that TiO2 core devices are much more fabrication tolerant

and exhibit less performance degradation due to higher order TOC properties than

TiO2 clad structures. However, for integration with athermal laser structures,

the simplest modification to the Hybrid Silicon Platform would be as a TiO2

cladding. Given this fact, novel athermal laser designs were presented to passively
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or with simple feedback schemes maintain wavelength stability over temperature

and monitor power levels to stay within application limits.

Models and material data contributions were presented that should be of ben-

efit for future explorations in this topic.

5.1.2 III-V/Si3N4 heterogeneous laser integration

A clear path toward heterogeneous laser integration of GaAs type lasers with

Si3N4 waveguides was given with laser, mode converter, and DBR mirror demon-

strations in Chapter 3. Additionally, an exploration of best approaches to reduce

thermal impedance of these devices was given through heat transfer simulations.

Conclusions were that additional focus for tapers should be given to shorter

designs, and that lasers with oxidation apertures have not proven to easily in-

tegrate with tapered mode converters due to oxidation of the tapers themselves.

Therefore, shallowly etched narrow ridge designs should be considered as an al-

ternative for index and current guiding and such lasers should be packaged with a

flip-chip bonded approach to compensate the higher thermal impedance of these

narrower devices.
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5.1.3 Fabrication of heterogeneous GaAs/Si3N4 lasers

A detailed discussion of the heterogeneous laser process flow was given in

Chapter 4. Observations and outcomes from process development into bonding

GaAs type devices to SiO2 on Si, etching the (Al)GaAs material with various ICP

tools, oxidation of the high Al oxidation aperture layer post bond, and the best

methods of reducing taper tip width are all detailed.

Key processing steps not included in prior laser process flows at UCSB in-

cluded bonding using CMP planarization and surface roughness reduction, DUV

stepper lithography of heterogeneous devices, improved ICP dry etch processing

of (Al)GaAs, and AlGaAs oxidation of bonded lasers. Each of these required con-

siderable time to develop and as much as possible the details of each process and,

more importantly in many cases, the rationale for process decisions was included.

5.2 Future work

It is clear that much more work can be done in both the areas of athermal

devices and heterogeneous integration of III-Vs on non-silicon PLCs. From my

perspective, a few projects should be considered as direct continuations from this

work.
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First, a highly temperature stable DBR with a Si core would be advantageous

for realization of the athermal laser designs presented in Section 2.4. The DBR

presented in Section 2.3.1 both shows poor athermal performance and a strong

impact of higher order TO effects from Si and TiO2. Also, by making the grating

in Si, the effective index is so high as to make the achievable Bragg wavelengths too

long for our current lithography tools. It would be interesting to see the integration

of the TiO2 core type waveguide with a lower index for such an athermal grating.

This would both be more athermalized and more fabrication tolerant, one example

of a performance enhancement of using non-si waveguides.

Second, shallow ridge GaAs type lasers could be used rather than those con-

fined by an oxidation aperture. These would not have an issue with electrically

pumping the tapers that those with oxidized tapers would have. They would also

not observe as much surface recombination as a deeply etched structure as you

could design the distance to the QW sidewall to be wall away from the shallow

ridge.

Finally, one of the visions we hope will come out of this type of heterogeneous

integration is an ultra-broadband source from the ultra-violet (UV), visible (VIS),

near infra-red (NIR), short-wave IR (SWIR), mid-IR (MIR), out even to long-

wave-IR (LWIR). In order to span such a massive range, it necessary to have

a broadband waveguide and a heterogeneous integration of all of the material
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systems required to provide light across these wavelengths. Figure 5.1 gives the

vision of this multiple-band integration.

Figure 5.1: Schematic of a fully-integrated UV-MIR (6-bands shown) single-chip
emitter concept, showing the two regions of the wafer with Si-on-Si3N4-on-SiO2-
on-Si and more standard Si and Si3N4 waveguides. (Artwork courtesy of Martijn
Heck.)
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