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Abstract	 —	 We	 report	 room	 temperature	 continuous	 wave	 operation	 of	 electrically	 pumped	 III-V	
semiconductor	lasers	epitaxially	grown	on	exact	(001)	GaP/silicon	substrates	without	offcut.		
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III-V	quantum	dot	lasers	epitaxially	grown	on	silicon	are	proving	to	be	a	promising	light	source	for	
silicon	photonics,	with	the	potential	to	be	manufactured	at	scale	with	low	cost	[1-3].		To	fully	capture	
their	added	value,	these	lasers	should	be	compatible	with	existing	silicon	CMOS	foundry	process	flows	
to	enable	their	integration	with	other	photonic	devices	on	a	common	silicon	substrate.		We	and	other	
groups	 have	 previously	 demonstrated	 high	 performance	 continuous	 wave	 quantum	 dot	 lasers	
epitaxially	grown	on	silicon	[2-3].	 	These	past	works	utilized	intentionally	offcut	silicon	substrates	to	
suppress	antiphase	disorder	arising	from	the	III-V	(polar)	on	silicon	(non-polar)	heteroepitaxy,	and	as	
such	are	not	compatible	with	standard	silicon	CMOS	processing,	which	requires	nominal	(001)	silicon.		
Thus,	high	performance	III-V	lasers	on	exact	(001)	silicon	are	needed.		To	this	end,	we	have	previously	
demonstrated	optically	pumped	microdisk	 lasers	on	patterned	(001)	silicon	[4].	 	We	now	report	the	
first	demonstration	of	an	electrically	pumped	quantum	dot	 laser	operating	at	 room	temperature	 in	
continuous	wave	operation	grown	on	exact	GaP/silicon	substrates	without	offcut.					

The	epitaxial	laser	stack	was	grown	on	a	GaP/Si	(001)	template	provided	by	NAsP	III-V	GmbH.		The	
original	template	was	a	775	μm	thick	(001)	on-axis	p-doped	Si	substrate,	with	200nm	thick	n-doped	Si	
homo-epitaxial	 buffer	 and	 a	 subsequent	 45	 nm	 thick	 n-doped	 GaP	 nucleation	 layer,	 deposited	 by	
metal	organic	chemical	vapor	phase	epitaxy.		An	InAs	quantum	dot	laser	embedded	in	a	GaAs/AlGaAs	
GRINSCH	waveguide	was	then	grown	in	MBE	(see	Fig	1).		The	active	region	consisted	of	seven	stacks	
of	 InAs	 quantum	 dot	 layers	 (2.75	MLs	 deposited	 at	 0.11	ML/s,	 VIII	 ratio	 of	 35)	 embedded	 in	 8nm	
In0.15Ga0.85As	quantum	wells,	which	were	separated	by	partially	p-doped	GaAs	barriers.	MBE	growth	
temperatures	 were	 500	 °C	 for	 the	 active	 region	 and	 590	 °C	 for	 GaAs/AlGaAs	 as	 detected	 by	 a	
pyrometer.	The	same	active	structure	was	also	grown	on	a	GaAs	substrate	for	comparison.		Figure	2	
a&b	 shows	 an	AFM	 comparison	 of	 quantum	dots	 on	GaAs	 substrates	 versus	 on	GaP/Si	 substrates,	
revealing	similar	morphologies.		Figure	2c	shows	a	photoluminescence	(PL)	comparison	of	the	two	as-
grown	 laser	 structures:	while	 the	peak	wavelength	 is	 similar	between	 the	 two,	 the	 intensity	of	 the	
laser	on	GaP/Si	is	~60%	that	of	on	GaAs.			

	 The	 as	 grown	material	was	 then	processed	 into	deeply	 etched	 lasers	with	 varying	 stripe	widths	
using	standard	dry	etching	and	metallization	 techniques.	 	The	Ti/Pt/Au	p-contact	was	deposited	on	
top	 of	 the	 etched	mesa	 and	AuGe/Ni/Au	 n-contact	metal	 deposited	 on	 the	 exposed	 nGaAs	 layers.		
Laser	cavities	were	formed	by	cleaving	for	the	lasers	on	GaAs,	and	dicing	+	polishing	for	the	lasers	on	
GaP/Si.		Fig.	3a	shows	room	temperature	continuous	wave	(CW)	light-current	(LI)	curves	of	2mm	long	
by	20	μm	wide	broad	area	lasers	on	GaAs	(Ith	=	190	mA)	and	on	GaP/Si	(Ith=345	mA),	with	no	extra	high	
reflection	coatings	applied	 to	 the	 facets.	 	The	 laser	on	GaP/Si	has	a	saturated	output	power	 (single	
facet)	of	110	mW.	 	Figure	3b	 shows	 typical	 room	temperature	CW	 lasing	 spectra	measured	 from	a	
device	on	GaP/Si,	showing	the	evolution	of	a	lasing	peak	near	1280nm	past	lasing	threshold.	 
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Figure	1.	Left:	Schematic	of	the	as	grown	laser	structure.		Right:	Electron	channeling	contrast	imaging	(ECCI)	
image	taken	at	the	surface	of	a	GaP/Si	template	with	2300nm	of	GaAs	grown	on	top	(dashed	line	in	left	figure)	
revealing	a	threading	dislocation	density	of	~3x108	cm-2,	the	RMS	roughness	is	>	5	nms.			

	
Figure	2.	1x1	μm2	atomic	force	microscope	(AFM)	scans	of	InAs/GaAs	quantum	dots	grown	on	(a)	GaAs	
substrates	and	(b)	GaP/Si	substrates.	(c)	Room	temperature	photoluminescence	comparison	of	QDs	on	GaAs	vs	
GaP/Si	under	incident	pump	power	density	of	18	W/cm2.	

 
Figure	 3	 	 a,	Room	temperature	CW	LI	curves	of	 lasers	on	GaAs	versus	GaP/Si	 substrates.	 	Threshold	current	
(densities)	 are	 190	 mA	 (475	 A/cm2)	 for	 the	 laser	 on	 GaAs,	 and	 345	 mA	 (862	 A/cm2)	 for	 GaP/Si.	 b,	 Room	
temperature	electroluminescence	spectra	below	threshold	 (blue)	and	above	 threshold	 for	a	 laser	on	GaP/Si,	
with	a	lasing	wavelength	of	~1.28	μm.			
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