A lithium niobate-Si$_3$N$_4$ platform on silicon by heterogeneous wafer bonding

Lin Chang,1,* Martin H. P. Pfeiffer,2 Nicolas Volet,1 Michael Zervas,1 Jon D. Peters,1 Costanza L. Manganelli,1,3 Eric J. Stanton,1 Yifei Li,1,4 Tobias J. Kippenberg2 and John E. Bowers1

1 Department of Electrical and Computer Engineering, University of California, Santa Barbara (UCSB), CA 93106, USA
2 École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
3 Scuola Superiore Sant'Anna, Istituto TeCIP, Via G. Moruzzi 1, 56124 Pisa, Italy
4 Department of Electrical and Computer Engineering, University of Massachusetts Dartmouth, Dartmouth, MA 02032, USA

*Corresponding author: linchang@ece.ucsb.edu

Abstract: A lithium niobate-Si$_3$N$_4$ platform on silicon is demonstrated. It combines second- and third-order nonlinearities and has low-loss waveguides with mode converters. This is a key step for integrating nonlinear materials in silicon photonics.

OCIS codes: (190.4390) Nonlinear optics, integrated optics; (130.3730) Lithium niobate; (040.6040) Silicon.

1. Introduction

Silicon (Si) is one of the most important material platforms used in photonics due to its mass-market applications in industry [1]. However, one limitation for Si and other CMOS-compatible materials (Si$_3$N$_4$, SiO$_2$) is that they typically do not have strong second-order nonlinearities (electro-optic effect, $\chi^{(2)}$), due to their centro-symmetric crystal structures or amorphous nature. Therefore, with the Si platform it is challenging to achieve many practically important functions, e.g. electro-optic modulation and three-wave mixing. In order to introduce second-order nonlinearity, here we bond lithium niobate (LN) thin film to thick Si$_3$N$_4$ waveguide. Compared to existing work of heterogeneous LN platform, our approach not only provides waveguides with lower losses [2], but also has an efficient taper for low-loss mode transition between different waveguides [3].

2. Design and fabrication

The heterogenous platform presented here consists of two types of waveguides, both illustrated in Fig. 1. The fully cladded Si$_3$N$_4$ waveguide for $\chi^{(3)}$ nonlinear interaction is 850 nm high and ~2 µm wide to achieve anomalous group velocity dispersion around 1.55 µm [4]. Another type of waveguide is the LN-Si$_3$N$_4$ waveguide consisting of a 300-nm thick LN layer separated from a Si$_3$N$_4$ core by a 150-nm thin SiO$_2$ spacer. The thickness of these two layers satisfied the index-matching condition for mode transition, and the spacer aims at reducing the abrupt change of mode shape at the boundary to limit coupling loss. A linear taper of Si$_3$N$_4$ rib with a length of 500 µm is used to achieve adiabatic mode transition.

Figure 1: Cross-section schematics of waveguide and taper, and mode profile simulations.

Figure 2: Processing flow.
The device processing flow is schematized in Fig. 2. The photonic Damascene process [5] is used to fabricate the Si$_3$N$_4$ waveguide devices on a Si substrate (100 mm in diameter) and provides local openings with planar surface for LN bonding. Compared to the previously used Damascene process for only Si$_3$N$_4$ waveguides [5], here in order to reduce the surface roughness in preparation for bonding, the deposited SiO$_2$ cladding layer is re-polished. This reduces the roughness from 5 nm to <0.3 nm. Additionally, the bonding area is opened by dry etch, leaving a thin SiO$_2$ layer as spacer. Vertical channels are patterned in these areas to release the gas during bonding. After Damascene process, surface plasma activation is performed and a chip (purchased from NANOLN) consisting of a 300-nm thick α-cut LN film on a 2-μm thick buried SiO$_2$ on a Si substrate is bonded onto the opened area. The bonded sample is finally annealed to enhance bonding strength.

3. Experimental results

The testing structure used here is a 1-cm long heterogeneous waveguide, with two tapers connecting the Si$_3$N$_4$ waveguides. TE polarized light is coupled in and out through Si$_3$N$_4$ waveguides. Compared to a reference structure with the same length of Si$_3$N$_4$ waveguide, the insertion loss of the heterogeneous waveguide is ~2 dB larger, as shown in Fig. 3. The simulated loss of one taper is ~0.9 dB, which matches well with the testing results. The propagation loss of the LN-Si$_3$N$_4$ waveguide is estimated to be <1 dB/cm, and such a low propagation loss is comparable with the loss of a bulk LN waveguide [6]. Small ripples are observed in the spectrum for the heterogeneous waveguide, which may be due to the taper reflections.

![Figure 3: Spectra of total insertion loss.](SM4O.2.pdf)

4. Conclusion

A heterogeneous platform on Si is demonstrated with large $\chi^{(2)}$ and $\chi^{(3)}$ coefficients by bonding a LN film onto thick Si$_3$N$_4$. With careful design of the waveguide geometry and by using advanced fabrication techniques, high confinements and low propagation losses have been achieved both for Si$_3$N$_4$ and LN-Si$_3$N$_4$ waveguides, with low mode transition loss by using an adiabatic taper. Therefore, this platform is promising for the wide range of chip-level nonlinear applications on Si.

This work is supported by a DARPA MTO DODOS contract (HR0011-15-C-055). N.V. acknowledges support from the Swiss National Science Foundation.

5. References