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Abstract: We present preliminary results on a widely-tunable laser with monolithically integrated 

high-Q ring based on heterogeneous silicon integration platform. The laser exhibits > 43 nm 

tuning range with side mode suppression ratio larger than 40 dB in the O-band.  
OCIS codes: (140.3600) Tunable lasers; (140.3560) Lasers, ring; (250.5960) Semiconductor lasers. 

 

1. Introduction 

Monolithically integrated widely tunable semiconductor lasers are of great interest for a variety of applications 

ranging from dense wavelength division multiplexing communication systems to remote sensing [1]. They offer 

advantage over bulky mechanically tuned external-cavity lasers in terms of footprint, cost and energy efficiency. 

Different configurations have been demonstrated in two major semiconductor platforms: Indium Phosphide (InP) 

and heterogeneous InP on silicon, including sampled-grating distributed Bragg reflector (SGDBR) laser [2], 

distributed feedback (DFB) laser array [3], and ring resonator (RR) laser [4]. 

As for InP-based tunable lasers, their linewidth performance is typically around 1 MHz, which is limited by the 

propagation loss and low obtainable Q factor of the resonator unless external feedback is applied. This scenario can 

be improved with silicon as low waveguide propagation loss allows high-Q photon storage in the silicon cavity, 

which was shown to reduce spectral linewidth down to as low as 50 kHz in heterogeneously integrated lasers [4]. 

Previously we proposed and theoretically analyzed the incorporation of a fully integrated high-Q ring (HQR) ring 

(intrinsic Q ∼ 1 million, assuming silicon waveguide propagation loss of 0.5 dB/cm) inside widely tunable 

heterogeneous silicon lasers to realize narrow linewidth lasers [1]. In this paper, we report our preliminary testing 

results of this novel high-Q ring laser (HQRL). A wide tuning range over 43 nm with side mode suppression ratio 

(SMSR) > 40 dB is realized.  

2.  Laser design and performance 

A schematic diagram of the fabricated HQRL is shown in Fig. 1. The laser consists of a gain section, a phase 

section, two RRs and a HQR. Two loop-mirrors form the oscillating cavity. The widely-tunable single mode 

operation is realized by the combination of the two RRs and the HQR as outlined in [1]. The RRs inside the cavity 

form a Vernier filter, which is used to filter out a single resonance of the high-Q ring as well as provide wide-

tunability. The HQR ring with FSR ~ 25 GHz filters out a single longitudinal mode of the cavity, and also helps to 

improve the linewidth due to cavity length enhancement at resonance and negative optical feedback. A 

semiconductor optical amplifier is integrated at the output waveguide to boost the output power. 7° degree angle and 

flare-out taper is employed to minimize reflections. The lasers were designed using a heterogeneous photonic 

integration process design kit (PDK) and fabricated under a DARPA EPHI multiproject wafer (MPW) program [5]. 

The total chip size is 3.6 mm × 0.5 mm. 

 

Fig. 1 A schematic view of a widely tunable high-Q ring laser design. Thermal tuners are yellow, gain section and SOA amplifier are orange. 
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The laser is tested on a copper heat sink with a fixed stage temperature of 23 ℃.  Fig. 2 shows the light-current 

curve of the tested chip with different SOA amplifier currents. The lasing threshold current is around 38 mA. The 

output light is then coupled with a lensed single mode fiber to measure the spectrum. Fig. 3 shows the laser 

spectrum at a gain section current of 60 mA and SOA amplifier current of 40 mA. A SMSR larger than 50 dB 

indicates narrow bandwidth of the combined RRs and the HQR. The wavelength tuning map shown in Fig. 4 at the 

same bias condition is obtained by simultaneously heating the two RRs as well as adjusting phase section and HQR 

section current, indicating a tuning efficiency around 31.3 mW/pi. A wide tuning range over 43 nm with SMSR > 

40 dB is realized as exhibited in Fig. 5. The dependence of linewidth on wavelength tuning will be reported at the 

conference.   
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Fig. 2 L-I curve of the tested HQRL with different SOA amplifier 

current. 
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Fig. 3 Laser emission spectrum at gain current 60 mA and SOA 

amplifier current 40 mA.   

 

Fig. 4 Wavelength tuning map of the tested HQRL 
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Fig. 5 Superimposed laser spectra. 


