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Abstract: We report comparison of lasing dynamics in InAs quantum dot (QD) micro-disk 
lasers (MDLs) monolithically grown on V-groove patterned and planar Si (001) substrates. 
TEM characterizations reveal abrupt interfaces and reduced threading dislocations in the QD 
active regions when using the GaAs-on-V-grooved-Si template. The improved crystalline 
quality translates into lower threshold power in the optically pumped continuous-wave MDLs. 
Concurrent evaluations were also made with devices fabricated simultaneously on lattice-
matched GaAs substrates. Lasing behaviors from 10 K up to room temperature have been 
studied systematically. The analyses spotlight insights into the optimal epitaxial scheme to 
achieve low-threshold lasing in telecommunication wavelengths on exact Si (001) substrates. 
© 2016 Optical Society of America 

OCIS codes: (140.5960) Semiconductor lasers; (140.3948) Microcavity devices; (230.5590) Quantum-well, -wire 
and -dot devices. 
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1. Introduction 

Fusing photonic circuits with the advanced silicon technology can break the cost barrier of 
optoelectronics, essential to enabling the transition from copper to optical interconnects in 
future data centers [1]. In this regard, an on-chip light source represents a vital component, 
but has been a major obstacle hindering the development of silicon photonics. Although 
attempts have been made to overcome the indirect bandgap limitation in Si and group-IV 
compatible alloys, a highly efficient silicon-based laser that is on par with state-of-the-art III-
V lasers remains elusive [2, 3]. Integration of III-V laser diodes on silicon is arguably the 
most viable path to leverage the economies of scale of silicon while maintaining the highest 
efficiency and yield [4, 5]. Over the last few decades, various approaches to achieve III-V 
photonics on silicon have been pursued, including flip-chip integration, bonding technology, 
and heteroepitaxial growth. Despite the fact that direct epitaxy of III-V lasers on silicon is a 
truly monolithic approach desirable in the long term, this technology has lagged far behind [1] 
because of the fundamental challenges in mitigating issues brought by the lattice mismatch 
and thermal mismatch between III-V materials and silicon. The high sensitivity of 
semiconductor lasers to crystalline defects generated in heteroepitaxy makes the task 
formidable. Recent advances in growing high performance InAs quantum dot (QD) lasers on 
Si substrates revealed the great potential of utilizing dense and spatially isolated quantum dots 
to circumvent crystal defects in heteroepitaxy, marking a big step towards potential 
commercial success of integrated silicon photonics [6–12]. To eliminate antiphase-domains 
(APDs), all the work reported so far, however, strongly relies on the use of offcut Si 
substrates. Previously, we have introduced GaAs on V-groove patterned silicon (GoVS) 
templates using CMOS-compatible, exact (001) silicon wafers without offcut [13, 14] and 
demonstrated 1.3-μm InAs QD micro-disk lasers (MDLs) [15–17]. Compared to the use of 
planar Si substrates, growing quantum-dot lasers on V-groove patterned Si substrates may 
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by a five-stacked InAs dot-in-a-well (DWELL) structure [22] sandwiched by 50 nm 
Al0.4Ga0.6As cladding layers. 

Characterization of crystal defects was carried out by TEM imaging using a JEOL2010F 
field-emission microscope operating at 200 keV. Taken along the [110] zone axis, the bright-
field cross-sectional TEM images in Figs. 1(a) and 1(b) present the complete structures of the 
MDLs grown on GoVS and planar Si, respectively. We observe much reduced defects 
threading upwards in the GoVS template. Figures 1(c) and 1(d) show a zoomed-in view of the 
active region consisting of five-stacked InAs DWELLs. As opposed to the clean structure on 
the GoVS template, dislocation lines frequently penetrate through the active region on the 
planar Si template. In addition, the TEM images revealed a great difference in interface 
abruptness of the DWELL structures. While the interface is well defined and flat on the GoVS 
template, surface undulations were uncovered on the planar Si. Plan-view TEM measurements 
indicated a threading dislocation density of 1.4 × 108 cm−2 in the active region on the GoVS 
template, while three times the value (5.0 × 108 cm−2) was observed on the planar Si. Typical 
plan-view TEM images on the V-groove patterned and unpatterned Si are shown in Figs. 1(e) 
and 1(f), respectively. 

 

Fig. 2. Room temperature PL of the as-grown structure on GoVS template, GaAs substrate and 
planar Si template at pump power densities of (a) 20 W/cm2 and (b) 4700 W/cm2. 

Figure 2 compares room temperature PL of the as-grown epitaxial structure on the three 
substrates. At a low pump power density of 20 W/cm2 in Fig. 2(a), non-radiative 
recombination acts as the dominant quenching mechanism, precluding efficient luminescence 
from QDs. The difference in the luminescence closely reflects varied defect levels in the 
GaAs templates. Compared to the reference QDs on the GaAs substrate, the integrated PL 
intensity of the QDs was degraded by more than a factor of 9 on the planar Si, whereas one 
third degradation was observed on the GoVS template. This suggests superior optical 
efficiency using V-grooved Si, compared to simple planar Si. At a high pump power density 
of 4700 W/cm2 in Fig. 2(b), we observe only slightly weaker luminescence on the planar Si 
than on the GoVS template. This is probably because at such a high pumping level, defects 
are mostly saturated. In Fig. 3(a), a high-resolution TEM image of an InAs quantum dot on 
the GoVS template is presented, showing a typical dot size of ∼21 nm in diameter and ∼6 nm 
in height. 
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Low temperature lasing characteristics were measured with the samples mounted in a 
helium gas flow cryostat and cooled to 10 K. The representative lasing spectra at 3 times 
threshold are presented in Figs. 4(a)-4(c). The spectra comprise of whispering-gallery modes 
(WGMs) of different radial and azimuthal orders. Dotted arrows were used to connect WGMs 
with the same radial order. The free spectral range (FSR) was extracted to be around 30 nm. 
While distinct lasing peaks were observed for all three samples, the MDL on GaAs exhibited 
the most significant suppression of background emission, indicating the most efficient 
coupling of the emitter to the surrounding cavity. In contrast, the MDL on planar Si exhibited 
the smallest extinction ratio of ~12 dB. This is presumably attributed to the highest density of 
defects in the epitaxial layer compared with the other two, such that the quenching effect from 
non-radiative recombination is more prominent. Furthermore, the deep levels associated with 
the dislocations can also leach away the photogenerated carriers that are generated outside the 
active region. Light-in light-out (L-L) lasing curves in the log-log scale at 10 K for the three 
samples are presented in Figs. 4(d)-4(f). The S-shaped nonlinear characteristics clearly 
indicate the evolution from spontaneous emission to lasing. Thresholds were determined 
through a linear fit to the higher-power region of the L-L curves in linear scale, as shown in 
the insets of Figs. 4(d)-4(f). The thresholds of the dominant mode were determined to be ~50, 
85, and 150 µW for the MDLs on the GaAs substrate, the GoVS template, and the planar Si 
template, respectively. 

Figures 5(a)-5(c) display representative room temperature lasing emission spectra of the 
MDLs on the GaAs substrate, the GoVS, and the planar Si template, respectively. Note that a 
pronounced background emission was observed on planar Si. From the linear L-L curve 
shown in the insets in Figs. 5(a)-5(c), the lasing thresholds were extracted to be ~100, 135, 
and 265 µW for the MDLs on the GaAs substrate, the GoVS template, and the planar Si 
template, respectively. 

 

Fig. 5. Laser emission spectra at 300 K for MDLs on (a) GaAs substrate, (b) GoVS template, 
and (c) planar Si template. Inset: L-L curve in linear scale, the dashed line represents a linear 
fit to the experimental data. 

Statistical analysis over some sampling of micro-disks were performed to reach a fair 
comparison. Histograms of the thresholds over a number of devices at 10 K and 300 K for the 
MDLs on the three templates are presented in Figs. 6(a)-6(f). The overall lasing thresholds of 
the MDLs on the GoVS template were much lower compared to those on planar Si. Notably, 
at 300 K, the threshold of the best working device on the GoVS template (135 µW) yielded a 
~2-fold reduction compared to the best one on the planar Si template (265 µW), and was only 
around 1.35 times that of the best reference MDL (100 µW) on GaAs. The low-threshold laser 
operation under room temperature continuous-wave optical pumping presents a solid evidence 
of the high optical properties of the III–V crystals monolithically grown on Si. Currently, our 
epitaxial structure does not adopt any dislocation filtering layers. It has been reported that four 
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sets of In0.18Ga0.82As/GaAs strained-layer superlattices (SLSs) may further reduce the 
dislocation density in the hetero-epitaxy of GaAs on Si [12]. We therefore expect better 
device performance by adding effective dislocation filters in the GaAs on Si buffer, as well as 
by improving the uniformity of the QDs to enhance active modal gains. 

 

Fig. 6. Histograms of the lasing thresholds over a number of devices at 10 K for MDLs on (a) 
GaAs substrate, (b) GoVS template, and (c) planar Si template. Histograms of the threshold 
over a number of devices at 300 K for MDLs on (d) GaAs substrate, (e) GoVS template, and 
(f) planar Si template. 

An important aspect of integrating active devices on Si is that the Si substrate is not only 
used as a substrate carrier but also can be used as waveguiding material because of the low 
optical material losses. The GoVS templates used in this work do not include any absorptive 
germanium buffer or other dislocation filter layers. Thus, it allows coupling from the laser 
active regions to Si waveguides and suggests potential opportunity to be incorporated in the 
well-developed silicon-on-insulator (SOI) technology in Si photonics. However, one concern 
for mode coupling into underlying patterned Si waveguide is that the V-grooves would add a 
significant amount of scattering loss. A. Liu et al. recently proposed one approach to achieve 
waveguide coupling by growing III–V cavity in selectively V-groove patterned regions on the 
handle wafer of a SOI substrate [11]. The optical mode is butt-coupled to a silicon rib 
waveguide and the optical coupling can be maximized by aligning the height of the active 
quantum dot region with the Si waveguide layer. 
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3. Conclusions 

In conclusion, low-threshold micro-disk lasers with compact optical cavities were 
demonstrated on (001) Si substrates using different epitaxial schemes. A comprehensive 
comparison of the lasing dynamics was made in devices with the same active structures and 
geometries but fabricated on different GaAs-on-Si templates, from 10 K up to room 
temperature. Compared to GaAs on Si by conventional blanket heteroepitaxy, the GoVS 
template using V-groove patterned heteroepitaxy exhibited improved material quality and 
thereby greatly enhanced optical efficiency, as reflected by the superior lasing characteristics. 
The somewhat forgiving nature of QD lasers is also demonstrated by room temperature lasing 
of MDLs grown on simple GaAs on planar Si templates. This work therefore closes the gap 
between III-V lasers epitaxially grown on lattice-matched substrates and dissimilar Si 
substrates, illuminating a promising path towards low-threshold on-chip laser sources for 
high-density, high-speed data interconnections. 
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