

Semiconductor quantum dot lasers: Why are they so quantum?

Frédéric GRILLOT

grillot@telecom-paristech.fr

UC Santa Barbara, Nov. 2, 2017

Acknowledgments

Involved in this work

- Dr. H. Huang, Télécom ParisTech
- Dr. K. Schires, Télécom ParisTech
- J. Duan, Télécom ParisTech (PhD)

Collaborations Germany, TU Berlin, Prof. D. Bimberg USA, UC Santa Barbara, Prof. J. Bowers

- USA, VirginiaTech, Prof. L. Lester
- Canada, NRC Ottawa, Dr. P. Poole

Why dynamical studies?

Integration of optical and electronic components

Several sources of optical feedback due to the various possible interfaces

- Short cavities: a few centimeter
- Long cavities: several meters

T Komljenovic et al., IEEE J. of Selected Topics in Quantum Electron. Vol. 21, (2015)

. . . .

Outline

Quantum dot lasers: Usefulness and limitations

Nonlinear dynamics of QD lasers

- Silicon based QD lasers (UCSB)
- InAs/GaAs QD lasers (TU Berlin)

Conclusions

Shape of density of states (gain spectral width) Number of states (transparency current) Carrier confinement Energy tuning

Energy quantization

Wavefunction confinement with heterostructure potential

$$\Delta E >> kT$$

Seminar UCSB, Nov. 2, 2017 - F. GRILLOT

L<< 30 nm at 298K

Shape of density of states (gain spectral width)

Number of states (transparency)

Carrier confinement

Energy tuning

2D nanostructures: Quantum well

Continuum of energy states in two directions

Shape of density of states (gain spectral width)

Number of states (transparency)

Carrier confinement

Energy tuning

1D nanostructures: Quantum wire

Shape of density of states (gain spectral width)

Number of states (transparency)

Carrier confinement

Energy tuning

Only in 0D nanostructures, energy levels are completely discrete

→ semiconductor atoms

An heuristic approach → Low dimensionality & laser performance

Major breakthroughs

1994		1 st lasing (optical pumping)	loffe Institute		
1994		1 st lasing (current injection)	TU Berlin & loffe Institute		
1999		Near-zero α - factor	Univ. New Mexico & AFRL		
2000		Record-breaking $J_{\rm th} = 19 {\rm A/cm^2}$	Univ. Texas, Austin		
2002-3		Superior temperature stability	Univ. Texas, Austin		
			Univ. Michigan, Ann Arbor		
2013 2014		Hybrid QD silicon lasers QD silicon lasers	loffe Institute University of Tokyo UC Santa Barbara		
Commercialization					
	2001	Zia Laser Inc.	USA		
	2003	NL Nanosemiconductor – GmbH	Germany		
	2006	QD lasers	Japan		

Fabrication

Stranski-Krastanov growth

Self-assembling dot formation;

Various material systems;

Emission wavelength depends on material gap and dot size

Common structure for fiber communications: InAs dots

GaAs substrats ~1.31 µm emission MOCVD, MBE, MOVPE

Seminar UCSB, Nov. 2, 2017 - F. GRILLOT

InP substrats ~1.55 µm emission CBE, MBE, MOCVD

M. T. Crowley et al., Semiconductors and Semimetals: Advances in Semiconductor Lasers, Vol. 86, pp. 371-405, (2012)

on

Advantages of idealized QD lasers

- \rightarrow Significantly lower threshold current density $j_{\rm th}$
- → Significantly weaker temperature dependence of j_{th} ; ideally, temperature-insensitive j_{th} ($T_0 = \infty$)
- → Superior opportunity for tuning gain spectrum width & emission wavelength (color of light)
- → Low chirp (shift of lasing wavelength with injection current); ideally, zero α factor

Advantages of QD lasers

Low threshold and high thermal stability

Reduced energy consumption in input power and cooling

Z. Alferov et al., IEEE J. Sel. Topic. Quantum Electron., vol. 6, pp. 832 (2000)

QD Laser Inc., White Paper, qdlaser.com (2008)

Advantages of QD lasers

E. Kapon, Semiconductor lasers I Fundamentals, Elsevier Science (1999) J. Duan et al., Coumpound Semiconductor Week, paper C7.4, Berlin (2017)

14

Self-assembled nanostructures

Variation of growth parameters (AFM 1x1 µm)

A. Lenz et. Al, Appl. Phys. Lett. Vol. 95, pp. 203105 (2009)

Excited states

Ideal situation Single electron level Single hole level

Satisfactory situation (high-symmetry QDs) Single electron level Multiple hole levels

Actual (low-symmetry large-sized QDs) Multiple electron levels Multiple hole levels

Electronic structure

K. Veselinov et al., Optical and Quantum Electronics, Vol. 38, pp. 369-379, (2006)

Intradot relaxation

PL rise time: ~ 80 to 10 ps

Phonon-assisted relaxation, Auger effect

K. Veselinov et al., Opt. Quant. Electron., vol. 38, pp. 369-379, (2006)

Gain clamping with QD laser

Slow intraband relaxation Unclamped gain above threshold Dual state lasing

B. Lingnau et al., New J. Phys., vol. 15, pp. 093031 (2013) N. A. Naderi et al., Opt. Express, vol. 18, pp. 136197 (2010)

Gain clamping with QD laser

\rightarrow Oscillator strength: Richer & complex dynamics

B. Lingnau et al., New J. Phys., vol. 15, pp. 093031 (2013) N. A. Naderi et al., Opt. Express, vol. 18, pp. 136197 (2010)

Adversely affected characteristics:

Gain decreases

- J_{th} increases & is more *T*-sensitive
- (T₀ decreases)
- **Output power decreases**

Advantages can only be realized if QDs are sufficiently uniform

Fluctuations in QD sizes

Fluctuations in energy levels in QDs

Inhomogeneous line broadening

Adversely affected characteristics:

Gain decreases

- $J_{\rm th}$ increases & is more *T*-sensitive
- (T₀ decreases)

Output power decreases

Courtesy of Prof. Reithmaier (U. Kassel, Germany)

Advantages can only be realized if QDs are sufficiently uniform

Single dot spectroscopy reveals the temperature dependence of the homogeneous broadening

M. Bayer and A. Forchel, Phys. Rev. B, Vol. 65, (2002)

500 mA

140 mA

60 mA

40 mA 30 mA

A direct competition between line broadening mechanisms

Low temperature, many independent emitters High temperature, carrier thermalization

(a)

-55

-60

T = 110 K

I_{th} = 30 mA

umin.

Linewidth broadening factor

Contributing features to α_{H} -factor in QD lasers Discrete higher energy levels Dot size dispersion (inhomogeneous broadening)

Crucial for understanding the dynamical complexity of semiconductor lasers

D. Bimberg et al., Quantum Dot Heterostructures, John Wiley & Sons (1999)

Linewidth broadening factor

Two-state lasing operation balloons the $\alpha_{\rm H}\text{-}factor$ of the GS transition

F. Grillot et al., IEEE Journal of Quantum Electronics, Vol. 44, pp. 946-963, (2008)

Dynamical features of lasing states

Ground-state lasing

Highly damped;

Lower modulation bandwidth

Excited-state lasing

Higher material gain;

Better modulation performances

Nonlinear dynamical characteristics of QD lasers? Impact of the lasing states?

Seminar UCSB, Nov. 2, 2017 - F. GRILLOT

D. Arsenijević et al., Appl. Phys. Lett., Vol. 104, pp. 181101 (2014)

QD lasers with optical perturbations

Optical feedback

Optical injection

Nonlinear physical mechanism must exist Linewidth broadening factor > 0 Coupling between gain and refractive index Coupling between field magnitude and phase

 \rightarrow Okay for bulk and quantum well lasers

M. Sciamanna and K. A. Shore, Nature Photonics, Vol. 9, pp. 151-162, (2015)

QD lasers with optical perturbations

Optical feedback

Optical injection

Peculiar features from QD lasers Vertical coupling $(E_{GS}-E_{ES})$ Inhomogeneous broadening α_{H} -factor Oscillator strength

 \rightarrow Richer nonlinear dynamics

QD lasers with optical perturbations

Optical feedback

Optical injection

Peculiar features from QD lasers Vertical coupling $(E_{GS}-E_{ES})$ Inhomogeneous broadening α_{H} -factor Oscillator strength

 \rightarrow Richer nonlinear dynamics

Route to chaos

 au_{c}

 au_{p}

Undamping of the relaxation oscillations leads to deterministic chaos

	Population lifetime (carrier lifetime) [s]	Photon lifetime [s]	Relaxation oscillation frequency [Hz]	T =
Semiconductor lasers Solid-state lasers Gas lasers	$ 10^{-9} \\ 10^{-3} \\ 10^{-8} $	$ 10^{-12} \\ 10^{-9} \\ 10^{-7} $	$\sim 10^9 \ \sim 10^5 \ \sim 10^6$	

Route to chaos

 au_{c}

 au_p

Undamping of the relaxation oscillations leads to deterministic chaos

	Population lifetime (carrier lifetime) [s]	Photon lifetime [s]	Relaxation oscillation frequency [Hz]	<i>T</i> =
Semiconductor lasers Solid-state lasers Gas lasers	10 ⁻⁹ 10 ⁻³ 10 ⁻⁸	$10^{-12} \\ 10^{-9} \\ 10^{-7}$	$\sim \!\! 10^9 \ \sim \!\! 10^5 \ \sim \!\! 10^6$	

Route to chaos

Undamping of the relaxation oscillations leads to deterministic chaos

Silicon QD lasers

Response to optical feedback of silicon QD lasers grown by hetero-epitaxy?

Long delay optical feedback first investigated Shorter delays should be studied in the near future

Response to optical feedback of silicon QD lasers grown by hetero-epitaxy

Highly resistance against to optical feedback

A. Y. Liu , Optics Express, Vol. 25, pp. 9535 (2017)

Silicon QD lasers

Chaos-free operation Strong damping of the GS transition? Low α_{H} -factor?

Ultralow α_H-factor

Silicon QD lasers with GS lasing line at 1280 nm

Material gain extracted from amplified spontaneous emission

Ultralow α_H-factor

Silicon QD lasers with GS lasing line at 1280 nm

Value at gain peak ~ 0.5

First ever observation of a near zero α_{H} -factor on a silicon QD laser!

Higher pumping rate

Slight degradation of the electrical spectrum observed at higher pumping This observation differs from DFB lasers which are usually more robust against optical perturbations at higher bias \rightarrow FP dynamics is however different because longitudinal modes are in interaction with multiple external cavity modes (long delay)

Two-state lasing dynamics

Silicon QD lasers with GS-ES lasing lines

Label B16 (1 mm)

 $I_{th}^{GS} = 69 \text{ mA}$ $I_{th}^{ES} = 150 \text{ mA}$

Two-state lasing dynamics

Silicon QD lasers with GS-ES lasing lines

The $\alpha_{\text{H}}\text{-}\text{factor}$ of the GS transition remains extremely low

Seminar UCSB, Nov. 2, 2017 - F. GRILLOT

41

Same bifurcation point as for the GS lasing Chaotic operation with lower bandwidth Smaller ES α_{H} -factor?

Bias current around I_{th}^{ES} (~150 mA)

When bound states are both activated, the chaotic dynamics is accelerated Bifurcation level reduced down to 0.05%

Increase of the GS α_{H} -factor? Transfer of stimulated emission?

InAs/GaAs QD lasers

A.R. Kovsh et al., J. Cryst. Growth, Vol. 251, pp. 729-736 (2003)

Output characteristics

Output characteristics

Chaos-free transmitter

GS QD laser at 1.5 x I_{th} (long delay, 7 m)

Broadband chaos

ES QD laser at 2 x I_{th} (long delay, 7 m)

49

H. Huang et al., AIP Advances, Vol. 6, pp. 125114, (2016)

Institut Mines-Télécom

Peculiar features

GS QD laser;

Overdamped oscillator due to strong vertical coupling (quasi-class A like)

ES QD laser;

Underdamped oscillator with small vertical coupling (class B like)

Laser	GS		ES	
Bias	$1.5 \times I_{th}$	$2 \times I_{th}$	$1.5 \times I_{th}$	$2 \times I_{th}$
r _{crit}	> 6%	> 6%	0.5%	0.04%
$lpha_H$	1	1	0.5	0.5
$ au_{int}$	21 <i>ps</i>	21 <i>ps</i>	21 ps	21 <i>ps</i>
C_l	0.6	0.6	0.6	0.6
γ	> 18 <i>GHz</i>	> 18 <i>GHz</i>	1.6 <i>GHz</i>	0.6 <i>GHz</i>

H. Huang et al., AIP Advances, Vol. 6, pp. 125114, (2016)

Conclusions

QD lasers exhibit peculiar dynamical features originating from 3D quantization

- → GS lasing: meaningful for isolator-free transmitter in short-reach networks
- → ES lasing: essential for applications taking advantages of chaos such as chaotic lidars and random number generation
- \rightarrow Dynamics of silicon lasers are very promising for PIC applications

Further work will investigate optically injected silicon QD lasers

- \rightarrow Single mode transmitters
- \rightarrow Integrated microwave photonics

Thank you!

