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ABSTRACT 

 

Integrated Optical Isolators and Circulators for Heterogeneous Silicon Photonics 

 

by 

 

Duanni Huang 

 

Integrated optical isolators are nonreciprocal optical components that allow light to 

pass in one direction only. They are useful in conjunction with lasers, as they block 

undesired reflections from entering the laser cavity, where it might destabilize the 

device. Optical circulators are extensions of isolators, as they reroute the backwards 

propagating light into another direction. Thus, they can be used to separate 

counterpropagating signals. Both devices have many uses in photonic integrated 

circuits, but are challenging to implement, due to the reciprocal nature of most 

semiconductor and dielectric materials. 

Magnetic materials such as garnets can break the symmetry and are well suited for 

optical isolators and circulators. However, they are difficult to integrate with silicon, III-

V, and other commonly used optical materials. Heterogeneous integration through wafer 

bonding can overcome this obstacle and is used successfully in this work to achieve 

integrated optical isolators and circulators on silicon with record performance. This is 

done through waveguide optimization, careful process development, and a novel idea to 

integrate the source of magnetic fields, an electromagnet, directly onto the chip. This not 



 

 

ix 

only shrinks the footprint of the devices, but also provides flexibility in design as well as 

wavelength tunability, which is critical if the device is to be used in a circuit. 

Two flavors of the isolator and circulator are presented. One is a resonant device 

using a microring that can achieve up to 32dB of isolation. Slight modifications to the 

design can result in a microring optical circulator as well, a first to the best of our 

knowledge. The other device architecture is a nonresonant device using a Mach-Zehnder 

interferometer. While these devices have larger footprint, they can achieve optical 

isolation over 20dB over a wide wavelength range of 18nm. This is extremely useful in 

applications such as data transmission, where backwards propagating light may be 

spread over several nanometers.  

Of course, the isolator should be paired with a laser to realize its true potential. 

Several design and fabrication challenges stand in the way of this, which are addressed 

in this work. Polarization rotators are implemented to match the operating polarization 

between the laser and the isolator, and fabrication is carefully tailored such that both 

devices can be integrated on the same chip. Preliminary results show that the laser and 

isolator integration can happen in the near future. Such a demonstration would open up 

new opportunities in photonic integrated circuits, and would be of great interest in 

optical communications, sensing, RF photonics, as well as new, unexplored fields.  
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Chapter 1                    

Introduction 

1.1 Integrated Optics 

The invention of the transistor revolutionized the entire electronics industry and 

became the fundamental building block of integrated circuits (IC). Transistors are 

ubiquitous today and the underlying semiconductor industry has developed into a 

multi-hundred-billion-dollar industry. Following in the footsteps of the IC is the 

development of photonic integrated circuits (PIC), which use photons instead of 

electrons. Integrated optics take the same concepts (light generation and manipulation) 

that are used in bulk optics and shrink them down to the microscale, where the devices 

can be integrated together on a chip. This miniaturization of optics provides many 

benefits in terms of size, weight, power, and cost (SWaP + C), just like the ongoing 

miniaturization of electronics, otherwise known as Moore’s Law.  

Over the past few decades, silicon photonics has emerged as a leading platform for 

advanced photonic integration. The driving force behind this include economic reasons 

(cheaper substrates and material costs), manufacturing related reasons (larger wafer 
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sizes, higher processing yields), and scientific reasons (low-loss waveguides, highly 

compact devices). Using silicon as the primary material also comes with the benefit of 

using the technology and expertise developed by the semiconductor industry. 

Tremendous progress has been made by both academic institutions as well as industry 

to tackle various issues ranging from the availability of high-quality silicon-on-insulator 

(SOI) wafers, to the development of germanium epitaxial growth. However, the largest 

obstacle facing silicon-based photonics today is the same obstacle from over thirty years 

ago: the lack of an efficient laser diode in the group IV material system. 

The laser is arguably the most important element in any PIC, as it is responsible for 

the generation of light. In fact, this is the primary reason why the integrated optics 

industry has largely been focused on III-V semiconductor systems (GaAs, InP, GaN, etc), 

which have direct bandgaps and are suitable for lasers. Significant efforts have been 

made to achieve lasing in purely group IV materials, with notable demonstrations being 

the silicon Raman laser [1], the germanium tin (GeSn) laser [2], and the germanium laser 

on silicon [3]. However, continuous wave operation at room temperature or higher is 

required for most practical applications, which these lasers struggle to meet due to poor 

efficiency. 

An ideal platform would have access to both material systems (Si and III-V). Epitaxial 

integration of III-V materials directly on silicon is highly desired, but difficult due to 

lattice and thermal mismatch between the materials. The difficulty lies in improving the 

material quality of the III-V and reducing dislocations and defects in the material, which 

serve as nonradiative recombination centers. This degrades the device performance and 

lowers the overall lifetime of the laser. Quantum dot (QD) based materials have 
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improved tolerance to defects, and lifetime of QD lasers on silicon have reached millions 

of hours (extrapolated) by reduction of dislocations through optimization of the growth 

parameters and strategy [4]. However, they have not been integrated with silicon 

waveguides due to the need for a thick buffer layer between the silicon and the quantum 

dots and are therefore incompatible with silicon photonic integrated circuits as of 

now [5]. An alternate method to bring silicon and III-V materials together is using wafer 

bonding. This method has already been adopted by various industry members such as 

Intel and Aurrion (acquired by Juniper) and is discussed in the following section.  

1.2 Heterogeneous silicon photonics 

As discussed in the previous section, one material system cannot be optimal for 

everything, and multiple materials must be used to realize highly functional PICs. In a 

purely monolithic approach to fabrication, different growths of materials are performed 

at various times during the process. This procedure, termed regrowth, is highly 

dependent on surface quality, and often restricted by the need to match the lattice 

constant of various materials. This not only decreases the possibilities of material 

combinations, but also adds significant fabrication complexity and reduces yield.  

Heterogeneous integration refers to the combination of multiple materials (often 

dissimilar in structure and properties) onto a common substrate wafer. For this work, 

the substrate wafer is an SOI wafer, and the materials are transferred onto the wafer 

using wafer bonding procedures. Critically, the material transfer takes place in an 

unprocessed state, and the bonded materials are processed together, often at a wafer 

level scale. This is contrast to hybrid integration, in which the laser and the silicon PIC 



 

 

4 

are processed separately and assembled afterwards. There is some confusion regarding 

these terms, as the first heterogeneous silicon laser was given the name “hybrid silicon 

laser” [6], but the difference in methodology is clear. Compared with hybrid integration, 

heterogeneous integration is more suitable for volume production, and often wins in 

terms of size, power, weight, and cost (SWaP+C). In many applications there is also 

tremendous advantage in having all devices integrated on a single chip, as it is resistant 

to mechanical shock, vibrations, and other environmental factors.  

The advancement in heterogeneous silicon photonics is also illustrated by the rapid 

scaling of heterogeneous silicon PICs, which has gone from several devices to hundreds 

of devices in just under a decade [7]. However, as the number of elements increases, the 

potential for undesired reflections in the PIC also increase. Reflections can come from 

any source of mode mismatch such as abrupt waveguide bends, tapered transitions, and 

facets shown in Figure 1.1. Some sources of reflection are shown in If the reflection is 

significant, it can cause undesired Fabry-Perot-like cavities to form within the PIC. This 

issue is exacerbated when on-chip lasers are present, as these are very sensitive to 

reflections. The conventional solution in optics is to place an optical isolator directly 

after the laser, which blocks all reflections from reaching the laser.  

 

Figure 1.1: SEM images of potential reflections in a PIC from facets, MMIs, and tapers. 
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An extension of an isolator is an optical circulator, which can take the backwards 

propagating light and direct it somewhere else. Thus, it is able to separate 

counterpropagating signals. Optical isolators and circulators can also be found in many 

applications beyond just eliminating unwanted reflections. They are advantageous to 

have in any system involving optical amplifiers, and absolutely necessary in the case that 

bidirectionality is desired [8]. Optical circulators are commonly found in wavelength 

division multiplexed (WDM) systems in conjunction with gratings. They are also crucial 

components in interferometric sensors (Sagnac type) or distributed sensing (OFDR). 

PICs involving optical isolators and circulators are discussed in more detail in Chapter 

7. A depiction of the use of these devices is shown in Figure 1.2. Despite these 

advantages, there is not a single PIC today that actually uses an integrated isolator to the 

best of the researcher’s knowledge. This primarily stems from fabrication related 

challenges in integrating optical isolators with lasers, modulators, and other critical 

photonic devices. Heterogeneous integration has been proposed as a way to overcome 

these challenges [9]. The vision for this is shown in Figure 1.3, in which all the relevant 

PIC components are integrated together on a common SOI wafer. This is done through 

bonding multiple dies of different material onto the wafer, which has previously been 

demonstrated with III-V materials [10,11].  
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Figure 1.2: Example of a reflection that can destabilize a laser cavity without an isolator, as well 
as the use of a circulator to separate counterpropagating signals. 

 

Figure 1.3: Schematic of all the components that have been realized on the heterogeneous 
silicon platform. 

1.3 Optical Nonreciprocity 

Optical isolators, in many ways analogous to the electronic diode, are unique in their 

ability to break the reciprocal nature of light and only block light in one direction. They 

are essential in preventing unwanted reflected light from reaching the optical cavity, 

while simultaneously maintaining the desired output power. Optical circulators extend 

the principle of an optical isolator by rerouting the backwards propagating light to an 

additional port. Thus, it is able to separate counterpropagating signals. 

Mathematically, optical isolators and circulators are devices that break Lorentz 

reciprocity. Lorentz reciprocity does not hold up in cases in which the medium of 
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interest has an asymmetric or nonlinear permittivity tensor or has time dependence. 

This can be depicted as a device with asymmetric scattering matrix as shown in Figure 

1.4, in which a and b represent the field components entering and exiting the device 

respectively. They are characterized by allowing the propagation of light in one specific 

direction, such that their scattering matrix is non-symmetric [12].  

 

Figure 1.4: Scattering matrix of any photonic component relating the input fields to the 
output fields.  

It is important to note that there exists a class of devices which have been classified 

as optical diodes. These also demonstrate different forward and backward transmission, 

but differ from optical isolators, as they do not show optical nonreciprocity. The classic 

example of this is an abrupt transition from a single-mode waveguide (fiber) and a multi-

mode waveguide (fiber). Going from single to multimode, the power transmission 

should be near unity, with some distribution of power among all the modes supported 

in the multimode region. Going the other way around, if the fundamental mode in the 

multimode section is excited, not all of it will transmit into the single-mode section, so 

the transmission will be less than one. However, this is not an isolator. If the same 

superposition of modes corresponding to the result of the forward transmission are 

excited in the multimode region for the backward transmission, the backward 

transmission should be near unity. This is the principle of optical reciprocity. Whatever 
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happens in the forward direction can be “undone” by doing the opposite in the reverse 

direction. Optical isolators should block all backwards propagating light, regardless of 

what combination of modes are used. This topic has been extensively debated in 

literature  [12–14].  

Another key difference between optical diodes and isolators is that isolators need to 

work when both forward and backward propagating light are present simultaneously in 

the device. Most lasers will emit in continuous wave, so that there is always a forward 

propagating wave. This rules out a class of devices such as an add-drop ring resonator 

with asymmetric coupling values to differentiate the quality factor in the forward and 

backward direction in such a way that nonlinear effects are only observed in one 

direction [15]. This breaks down when light is propagating in both directions, as the 

nonlinear effects will always be observed, and the device becomes purely reciprocal.  

Thus, Lorentz reciprocity must be broken. This can be effectively broken in three 

different ways: i) by spatiotemporal modulation (STM) of the refractive index; 

ii) exploiting nonlinear effects (NLE) and iii) using magneto-optical (MO) materials. 

In STM case, the nonreciprocity of the device is induced by modulating the refractive 

index of the waveguide, usually with a microwave  [16] or acoustic signal  [17]. For a 

given propagation direction, the modulating signal is used to couple the incident light 

with different modes or frequencies supported by the waveguide that can then be 

filtered or radiated out of the device  [18]. This modulating signal has no effect on 

counter-propagating light, as the phase relation between the light and modulating signal 

is different. Integrated optical isolators have been demonstrated exploiting the electro-

optic effects in a travelling wave III-V modulator  [19] as well as a tandem phase 
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modulator  [20]. Similar isolators were achieved in silicon [16,21]. No additional 

materials are needed, making STM based isolators very attractive for integration with 

lasers. However, the operation of the isolators often requires complex, high-speed drive 

circuits that can consume large amounts of power. Furthermore, they also suffer from 

small optical bandwidth, and the results to date have not achieved large isolation.  

In the second approach, a NLE is tailored to achieve nonreciprocal behavior. As 

previously mentioned, not all nonlinear effects can be used for this purpose, as some 

effects such as Kerr-like nonlinearities are subject to dynamic reciprocity  [22]. When a 

forward and backward propagating signal are simultaneously propagating through the 

device, the nonreciprocity of the system can break down, and the device cannot be used 

to perform isolation. Nonlinear effects suitable for isolation are Raman 

amplification  [23], stimulated Brillouin scattering  [24], and parametric 

amplification  [25] among others. Like STM based isolators, the NLE isolators do not 

require materials outside of those commonly found in CMOS or III-V based foundries. 

However, a drawback of using nonlinear effects is the inherent dependence between 

optical isolation of the device and the optical power of the incident light. This is 

undesirable as the feedback to the laser should be minimized regardless of the output 

power. Furthermore, they also suffer from small isolation bandwidths since they 

generally rely on phase matching, meaning isolation is only performed at a specific 

wavelength.  

This leads to the focus of this work, which is optical isolators and isolators based on 

magneto-optic materials. Magneto-optic materials inherently have an asymmetric 

dielectric tensor when under the influence of a magnetic field, which breaks Lorentz 
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reciprocity. They are broadband, linear, and widely used in commercial applications 

today. However, the use of isolators and circulators in PIC continues to elude 

researchers, as the magnetic materials are difficult to integrate with silicon, III-V, and 

other commonly used optical materials. This is the basic problem that the work in this 

thesis aims to solve.  

Summary 

The rapid growth of integrated optics over the past decades has resulted in 

increasingly complex photonic integrated circuits that rival their benchtop counterparts 

in terms of performance. At the same time, PICs have much lower SWaP+C, which opens 

up a realm of new possibilities. Silicon photonics in particular has benefitted from 

decades of CMOS expertise, and is an excellent material system to realize complex PIC, 

with the exception of the laser source. Heterogeneous integration using wafer bonding 

techniques has already been established as a potential solution and can be extended to 

include materials outside the traditional III-V materials. This can be utilized to integrate 

optical isolators and circulators for silicon photonics through the bonding of magneto-

optic materials.  

Thesis Organization 

This thesis is divided into eight chapters. The first chapter has provided an 

introduction to integrated optics, with a focus on silicon photonics. Heterogeneous 

integration using wafer bonding is described as a method to partially overcome material 

incompatibility challenges. This is especially pertinent to this work, as many magnetic 
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materials are incompatible with silicon based on lattice constant and thermal expansion 

coefficient mismatch. An introduction to optical isolators and the various methods of 

achieving optical nonreciprocity is given.  

Chapter 2 will cover the background behind using magneto-optic materials to break 

optical reciprocity. First, the principles behind magnetism and how they relate to optics 

(i.e. Faraday rotation) are explained. Not all materials are suitable for this application, 

so an overview of commonly used magneto-optic materials at telecom wavelengths (1.3 

or 1.55 micron) is given. The magneto-optic effect gives rise to nonreciprocal loss and 

nonreciprocal phase shift mechanisms, the latter of which is used as the basis for all 

devices covered in this work. Finally, the chapter concludes with a comparison of 

techniques to drive an external magnetic field in the vicinity of the PIC. An integrated 

electromagnet solution is chosen and used throughout the devices in this work.  

Chapter 3 covers the design, simulation, fabrication, and characterization of 

microring based isolators. Microrings are widely used in silicon photonics due to their 

small footprint, power consumption, and other unique properties described in this 

chapter. Both microring isolators and circulators are fabricated and measured, showing 

excellent performance. The use of an integrated electromagnet greatly shrinks the size 

of the microring optical isolator, rendering it more suitable for integration. 

Chapter 4 covers the design, simulation, fabrication, and characterization of 

nonresonant, Mach-Zehnder type isolators and circulators. These address a crucial 

drawback of the microring isolator, which is their small operating bandwidth. The 

integrated electromagnet additionally serves as a thermal tuning mechanism, which can 

be used to compensate for any fabrication inaccuracies.  
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Chapter 5 covers the efforts to change the operating polarization of the devices in 

Chapters 3 and 4 from TM to TE, which is the preferred polarization of most 

semiconductor lasers. This can be done either by altering the cross-section of the 

waveguides, or by including a polarization rotator in front of the isolator. Ultimately, the 

polarization rotator solution was chosen, as it maintains the optimal magneto-optic 

material quality. 

Furthermore, it ensures that the fabrication of the optical isolator is compatible with 

that used for integrated lasers, which is the subject of Chapter 6. Thermal budget is the 

primary concern, and the challenges and potential solutions are described. Ongoing 

efforts to integrate the isolator with a laser on silicon are detailed in this chapter. 

Chapter 7 covers some examples of isolators and circulators in photonic integrated 

circuits. Magneto-optic effects can also be used beyond just these devices, and two 

examples are given in a magneto-optic switch as well as a magnetic or current sensor. 

Finally, Chapter 8 provides a conclusion, as well as a personal perspective regarding the 

challenges overcome in this work, as well as challenges that remain. A future outlook for 

integrated optical isolators and circulators is given, reflecting the personal opinions of 

the researcher. 
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Chapter 2         

 Magneto-optic Effects 

The study of magneto-optics involves a number of phenomenon that occur when an 

electromagnetic wave such as light travels through a material that is under the influence 

of an external, quasi-static magnetic field. Such medium is also known as gyrotropic 

material. The origin of these effects dates to 1845, when Michael Faraday showed the 

first experimental evidence that light and electromagnetism were related. In his work, 

Faraday was able to measure the rotation of the polarization of light under the influence 

of a magnetic field as it travelled through a piece of glass with traces of lead  [1]. Thus, 

he was successful in “magnetizing a ray of light”, as he remarked in his journal. This effect 

is now known as Faraday rotation and is widely used in bulk and free-space optical 

isolators and circulators today. In this section, a brief overview of magneto-optic effects 

and their applications in waveguides is given. While some basic theory and origins of the 

effects are given, a much more detailed explanation can be found in physics textbooks. 

Regarding magneto-optics for integrated optics, a number of excellent reviews have 

been published on this subject [2–9]. 
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2.1 Faraday Rotation 

Faraday rotation describes the birefringence that arises between the two 

orientations of circularly polarized light when under the influence of a magnetic field. 

Critically, the sign of this circular birefringence, as defined as the refractive index 

difference between right hand polarized (RHP) and left hand polarized (LHP) light is 

dependent on the direction of propagation (�⃗⃗� ) with respect to the direction of the 

applied magnetic field (�⃗⃗⃗� ). In the Faraday configuration, �⃗⃗�  and �⃗⃗⃗�  must be either parallel 

or antiparallel. This dependence on propagation direction is also the origin of 

nonreciprocity. Any linear polarization of light can be decomposed as a superposition of 

the RHP and LHP states of light, which is defined in Equations 2.1-2.3. The Cartesian 

coordinate system referenced in these equations is given in Figure 2.1 

 

𝑬𝑹𝑯𝑷 = 𝐸0[cos(𝑘𝑧 − 𝜔𝑡)�̂� − sin(𝑘𝑧 − 𝜔𝑡)�̂�] 

𝑬𝑳𝑯𝑷 = 𝐸0[cos(𝑘𝑧 − 𝜔𝑡)�̂� + sin(𝑘𝑧 − 𝜔𝑡)�̂�] 

𝑬𝑳𝒊𝒏 =
𝑬𝑳𝑯𝑷±𝑬𝑳𝑯𝑷

2
 

(2.1) 

(2.2) 

(2.3) 

  

 

Figure 2.1: Schematic of Cartesian coordinate system used for analysis of a Faraday rotator in 
which light and magnetic field are parallel. 
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Here, the wave is assumed to be propagating in the z-direction, which is parallel to 

the applied the magnetic field. Circular birefringence will cause a handedness 

dependence on the refractive index, which is defined as ∆𝑛 = 𝑛𝐿𝐻𝑃 − 𝑛𝑅𝐻𝑃 . Substituting 

𝑘 = �̅�(
2𝜋

𝜆
) where �̅� is the refractive index in absence of magnetic field into the above 

equations gives the following equations. 

𝑬 =
𝐸0
2
[(cos (𝑘𝑧 − 𝜔𝑡 +

𝜋∆𝑛𝑧

𝜆
) + cos(𝑘𝑧 − 𝜔𝑡 −

𝜋∆𝑛𝑧

𝜆
))�̂�

+ (sin (𝑘𝑧 − 𝜔𝑡 +
𝜋∆𝑛𝑧

𝜆
) + sin(𝑘𝑧 − 𝜔𝑡 −

𝜋∆𝑛𝑧

𝜆
))�̂�] 

(2.4) 

𝑬 = 𝐸0 [(cos (
𝜋∆𝑛𝑧

𝜆
) �̂� + sin (

𝜋∆𝑛𝑧

𝜆
) �̂�] cos(𝑘𝑧 − 𝜔𝑡) 

(2.5) 

The polarization of light is rotated by an angle 𝜙 with respect to the incident 

polarization.   

𝜙 =
𝜋∆𝑛𝑧

𝜆
 

(2.6) 

The value of∆𝑛 can be derived either quantum mechanically, or classically. From a 

quantum mechanical point of view, the magnetic field causes a splitting in the Landau 

levels of the electrons, which is known as Zeeman splitting. The levels are split 

depending on the spin of the particle, which is tied to the handedness of the polarization. 

This splitting of the energy levels results in different transition energies in the system, 

which affects the imaginary component of dielectric function 𝜀(𝜔). Finally, the real part 

of 𝜀(𝜔) is also changed due to Kramer-Kronig relations, which results in the circular 
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birefringence and Faraday rotation discussed in this section. Further details can be 

found in  [10].  

Classically, it is well known that electrons in an external magnetic field obey the 

Lorentz law of motion. More specifically, electrons will spin around the axis of the 

magnetic field with an angular frequency known as the Larmor frequency of 𝜔𝐿 =

𝑒𝐵
2𝑚⁄ .  Here, e and m are the charge and mass of an electron respectively. When 

circularly polarized light with frequency 𝜔0is propagating through such a medium, the 

relative angular frequency between the electrons and light will be either higher or lower 

than that of the unmagnetized medium, depending on the handedness of the light. Thus, 

∆𝑛 = 2
𝑑𝑛

𝑑𝜔
𝜔𝐿 , as long as 𝜔𝐿 ≪𝜔0. This can be expanded as the following in Equation 

2.7 

∆𝑛 = (
𝑒𝐵

𝑚
)
𝑑𝑛

𝑑𝜔
= (

𝑒𝐵

𝑚
)(
−𝜆2

2𝜋𝑐
)
𝑑𝑛

𝑑𝜆
 

(2.7) 

Finally, we combine Equation 2.6 with Equation 2.7 To obtain the following expression 

for Faraday rotation of light over an interaction length (d)  [11]. 

𝜙 = −
𝑒

2𝑚𝑐
(𝜆
𝑑𝑛

𝑑𝜆
)𝐵𝑑 = 𝑉𝐵𝑑 

(2.8) 

The dependence between 𝑩 and 𝝓 is linear over a fixed interaction length. This linear 

constant is known as the Verdet constant (V)  [12]. The Verdet constant has units of 

[rad/T•m] and is strongly dependent on the optical wavelength. Strictly speaking, 

Equation 2.8 only holds true for diamagnetism, which is present in all materials. 

Equation 2.8 is often modified with an empirical correction factor between zero and one 
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to fit the measured Verdet constant for different materials and different types of 

magnetism (diamagnetic, paramagnetic, ferromagnetic, or ferrimagnetic). The 

differences in these magnetic materials is expanded on in Section 2.2. Far away from the 

absorption lines, the refractive index of transparent media can be modelled using 

Cauchy’s Law, which gives an inverse squared dependence between refractive index and 

wavelength. Thus, the Verdet constant also has a 1 𝜆2⁄  dependence based on Equation 

2.8, providing an inherent tradeoff between strength of magneto-optic interaction and 

the optical loss at longer wavelengths. Finally, the Verdet constant is known to be 

temperature sensitive. Generally, Faraday rotation will decrease at higher temperatures.  

As previously mentioned, the most common use of Faraday rotation in optics is to 

make optical isolators. The operating principle of the simplest Faraday optical isolator 

is depicted below in Figure 2.2. 

 

Figure 2.2: Schematic of a polarization dependent optical isolator 
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Figure 2.3: Schematic of a polarization dependent optical circulator 

This polarization dependent Faraday isolator consists of two linear polarizers 

orientated at 0 and 45 degrees, and a 45-degree Faraday rotator in between. The key 

element is the Faraday rotator, which comprises of a magneto-optic material and a static 

magnetic field. Backwards propagating light is polarized 90 degrees after the Faraday 

rotator, so it can be filtered out by the polarizer. An optical circulator can be realized by 

including an additional half-wave plate as well as use of polarization beam splitters, as 

shown in Figure 2.3.  The combination of the nonreciprocal 45-degree Faraday rotator 

and reciprocal 45-degree half-wave plate rotator causes the polarization of the 

backwards propagating light to be rotated by 90 degrees, where it is split off using the 

polarization beam splitter.  

It is worth noting that the schematics shown here are polarization dependent since 

they require the input light to be aligned with the polarizer. In most fiber-optic 

applications, polarization independent isolators and circulators are used, since 

polarization is easily scrambled in single mode fiber. These have a slightly different 

design, making use of birefringent crystals to physically displace the beam instead of 
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polarizers  [13]. However, the use of Faraday rotation to provide nonreciprocal 

polarization rotation is central to all designs.  

2.2. Magneto-optic materials 

While this is by no means an extensive overview of magnetic materials, this section 

introduces several classes of materials that have been studied for magneto-optic 

applications. To begin with, magnetism is divided into several classifications, which are 

listed below. 

• Diamagnetism occurs in all materials, regardless of composition. It is the weakest 

effect, and is a repulsive force (negative susceptibility), rather than an attractive 

force. The origins can be tied back to the orbitals of electrons being affected by 

the external magnetic field in such a way that it internally produces a magnetic 

field with an opposite sign. Classically, this is tied to Lenz’s law and Faraday’s law.  

• Paramagnetism is an attractive force and found in materials with unpaired 

electrons (unfilled orbitals). Some (or all) of the magnetic dipoles align up with 

the external field, resulting in a net magnetization in the same direction of the 

external field. However, the remnant magnetization is very weak, and the dipoles 

return to random configurations if the external field is removed. Common 

paramagnetic materials include aluminum and magnesium.  

• Ferromagnetism refers to the concept of permanent magnets, in which the 

material retains magnetization even in the absence of external magnetic fields. 

These materials such as iron, cobalt, or gadolinium also have unpaired electrons 

and magnetic dipole moments. Locally aligned “pieces” of the material are known 
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as magnetic domains, which are randomly orientated so that the overall 

magnetization is zero (much like paramagnetism, but on a much larger scale). 

The difference is that ferromagnets have strong remnance and coercivity, 

meaning that once the magnetic domains are aligned, they tend to stay aligned 

and magnetized. This is due to a quantum mechanical effect known as exchange 

interaction. An intuitive way to think of this is that the dipoles are kept in 

alignment by neighboring dipoles, since it is energetically favorable. Therefore, 

they tend to stay aligned even after the external field is removed, until they are 

demagnetized (by temperature, or other magnetic fields). Materials that are 

easily magnetized and demagnetized with little to no hysteresis effects are 

known as soft magnetic materials. On the other hand, materials with large 

hysteresis loops are known as hard magnetic materials.  

• Antiferromagnetism is similar to ferromagnetism, but the adjacent dipoles align 

up in antiparallel direction, rather than parallel. Generally, this effect is only seen 

at low temperatures.  

• Ferrimagnetism is somewhere in between ferromagnetism and 

antiferromagnetism. It consists of two populations of atoms that have dipoles 

oriented in opposite directions, but with unequal magnetic moments. Therefore, 

a net magnetization remains. The most common ferrimagnets are garnets and 

ferrites. Most of the magnetic materials used in this work fall under this category 

of magnetism.  

When considering materials for integrated magneto-optic applications, four 

important aspects of the material should be considered, which are listed below. 
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1. Maximum Faraday rotation of the material [deg/cm] 

2. Optical loss [dB/cm] 

3. Saturation magnetization [Oe] 

4. Ease of integration with semiconductors (silicon, III-V, etc) 

The first two parameters are often quoted together (Faraday rotation/optical loss) 

to provide a figure of merit [deg/dB]. Together, it provides a measure of how useful the 

material is for magneto-optic applications. One should note that in the interest of 

integration, device size is very important, so the figure of merit should not be blindly 

accepted. Given the same figure of merit, a material with larger Faraday rotation and 

optical loss is preferable to a material with lower Faraday rotation since the resulting 

device will be smaller. The third parameter is not as often stated but is very relevant 

when considering integration. Given the need to integrate an optical isolator on chip 

with lasers, other PIC elements, and electronic drivers in a small package, it may not be 

feasible to apply fields on the order of one Tesla to saturate the magnetization. Doing so 

would require strong external magnets, which add significant bulk in addition to 

significant headache when considering how to package the PIC. Finally, the ability to 

integrate the isolator with semiconductors (with lasers in particular) is important when 

considering the function of the isolator in a PIC.  

Semiconductors themselves have nonzero Faraday rotation due to free carriers and 

Zeeman splitting of the bands. However, these effects are very weak by themselves, and 

need to be enhanced. As discussed previously, the Verdet constant for diamagnetic 

materials follows a 1 𝜆2⁄  dependence, so Faraday rotation is stronger as the bandgap 

energy is approached. However, this significantly increases loss due to absorption, so 
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the figure of merit remains roughly the same. Researchers have also looked to introduce 

magnetic dopants such as iron into semiconductors such as InP or InGaAsP  [5]. For 

doping concentrations, up to 1017 cm-3, the Faraday rotation was measured to be as high 

as 125 deg/cm at a field strength of 1 Tesla  [14]. This corresponds to a Verdet constant 

of 218 rad/(T*m). Still, this is one to two orders of magnitude smaller than what can be 

achieved with garnets. 

Just like semiconductors can be doped, it is also possible to introduce ferromagnetic 

or ferrimagnetic properties by doping dielectrics such as glass. This is interesting 

because it has very low loss, with ease of integration. Terbium doped fiber has shown 

Verdet constants of 32 rad/(T*m) at 1060nm  [15], and 15.5 rad(T*m) at 1300nm  [16]. 

It is expected to be even lower at 1550nm. These low values mean large devices sizes 

are needed, which does not lend itself well to integration.  

Due to these low Faraday rotations, most commercial Faraday isolators discussed in 

the previous section use ferrimagnetic garnets such as terbium gallium garnet 

(Tb3Ga5O12), yttrium iron garnet (Y3Fe5O12), or bismuth substituted iron garnets 

(Bi3Fe5O12). Yttrium iron garnets (YIG) substituted with cerium (Ce1Y2Fe5O12) or 

bismuth (Bi1Y2Fe5O12) have shown the largest figure of merit among iron garnets. A 

comparison of some MO thin-film materials at telecom wavelengths is summarized 

below. The wavelength of interest is 1550nm. 

Material Optical Loss 
[dB/cm] 

Faraday Rotation 
[deg/cm] 

Y3Fe5O12 - 200 

Crystalline Ce:YIG on SGGG  [17] 14 -4500 

Polycrystalline Ce:YIG on Si  [18] [19]  58 -1260, -3000 

Polycrystalline Bi:YIG on Si  [20] - -1700 

Tb3Ga5O12 on Si  [21] - 500 
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Bi:TIG on Si  [21] - -500 

Ce:TIG on Si  [22] - -3200 

CoFe2O4  [23] >1000 24000 

Fe:InP or Fe:InGaAsP  [14] 1.66 125 

Table 2.1: Comparison of Faraday rotation and optical loss for several thin-film magneto-optic 
materials measured at 1550nm. The materials are either on native substrate or silicon or quartz 
substrates.  

The main challenge regarding these garnets has been integration with 

semiconductors. The MO material used in this work is cerium substituted yttrium iron 

garnet (Ce:YIG). It has a lattice constant of 12.57 Å, which is over twice the value of Si 

(5.431 Å), GaAs (5.6533 Å), and InP (5.8696 Å)  [24]. To make matters worse, the 

coefficient of thermal expansion (CTE) of garnet is 10.4 x 10-6 K-1, which is over three 

times larger than silicon. This makes it very difficult to grow garnet films on 

semiconductor substrates with high quality, although it is an area of active research.  

The highest quality garnet films are grown on a lattice matched (Ca, Mg, Zr)-

substituted gadolinium gallium garnet (SGGG, nSGGG=1.97) substrate, which is 

commercially available. The preparation of thin film on garnet substrates is performed 

through liquid-phase epitaxy (LPE), sputtering, or pulsed laser deposition. The Ce:YIG 

used in this work is prepared by sputter epitaxy by Professor Yuya Shoji and Professor 

Tetsuya Mizumoto from the Tokyo Institute of Technology. The growth conditions and 

procedures were developed over 20 years ago, are specified in the following 

works  [25,26]. The Faraday rotation of the film is measured as a function of out-of-plane 

magnetic field and plotted below in Figure 2.4.  

The out-of-plane magnetization for Ce:YIG for which this measurement is taken is 

considered to be the hard-axis, as it requires almost 2kOe of H-field to saturate. When 



 

 

26 

the magnetization is saturated, the Faraday rotation measures at -4500 deg/cm, after 

compensating for the slightly paramagnetic SGGG substrate. The Faraday rotation in the 

easy-axis (in-plane) is not measured but assumed to saturate at a similar value, albeit at 

a much lower magnetic field (~50Oe). Further information on Ce:YIG films can be found 

in references  [20,24,27,28]. A summary of relavant material properties of Ce:YIG is 

shown in the table below.  

 

 

Figure 2.4: Faraday rotation measurement of Ce:YIG/SGGG 

Material Parameter @ 1550nm Value 

Refractive Index 2.20 

Faraday Rotation  -4500 deg/cm 

Saturation (easy axis) ~50 Oe 

Saturation (hard-axis) ~2000 Oe 

Optical Loss 10-60dB/cm 
40dB/cm in this work  

Lattice Constant 12.57 angstroms 

CTE 1.04E-5 / K 

Figure of Merit 112.5 deg/dB 

Table 2.2: Selected material parameters of Ce:YIG relevant to this work. 
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The largest discrepancy in literature is the optical loss, which can vary from roughly 

10dB/cm to 60dB/cm depending on the preparation of the film and whether any anneals 

were performed post-deposition.  Other types of magneto-optic materials that have 

garnered interest include iron oxides (FeO, Fe2O3, etc)  [29] or cobalt ferrite  [23] which 

show Faraday rotation over 25,000 deg/cm at 1550nm. Unfortunately, this is 

accompanied with optical losses at the dB/micron scale, which renders the materials 

unusable for PIC.  

2.3 Magneto-optic effect in waveguides 

In this section, integrated optical isolators based on magneto-optic effects are 

discussed. Depending on the orientation of the magnetic field with respect to the 

waveguide, several magneto-optic effects can be realized. Proper waveguide design can 

then take advantage of these nonreciprocal effects to achieve optical isolation. Over 

several decades, many different approaches have been taken. There are three methods 

that stand out, being nonreciprocal mode conversion, nonreciprocal loss, and 

nonreciprocal phase shift. The first two methods will be discussed here, while 

nonreciprocal phase shift is discussed in more detail in Section 2.4 and adopted 

throughout this work.  

Initial work on integrated optical isolators copied the approach used in bulk, Faraday 

isolators used in free-space and fiber optic systems. This is also the approach that was 

discussed in Section 2.1. The waveguide equivalent of the approach is a nonreciprocal 

mode conversion, which is depicted in Figure 2.5. It combines a nonreciprocal mode 

converter with a reciprocal mode converter to allow forward propagation of TE modes, 
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while converting backwards propagating TE modes to TM modes, where they can be 

filtered out. The magnetic field is parallel to the propagation direction.  

 

Figure 2.5: Schematic of integrated Faraday rotator based isolator 

There are two immediate issues with such a design. One of the primary issues facing 

integrated Faraday effect isolators in waveguides is the linear birefringence of light. The 

waveguide cross-section is generally rectangular, such that the effective index and phase 

constant of the two polarizations of light is different. In fact, this modal degeneracy is 

usually favorable, as it prevents unwanted mode conversion. The combination of 

circular birefringence due to Faraday rotation with the linear birefringence from the 

waveguide leads to an elliptical polarization of light, reducing the mode conversion 

efficiency. Furthermore, the lack of phase matching causes the principal axis of 

polarization to oscillate, leading to a beating effect instead of monotonic behavior. The 

beat length is inversely proportional to the birefringence between the two modes  [30], 

which will be typically on the order of hundreds of microns. The resulting effect from 

this is the self-cancellation of polarization rotation. The polarization will start 

converting from TE to TM in one segment, and then backwards in the next segment, as 
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the phase is mismatched. This causes a great deal of trouble when trying to realize 45 

degrees of nonreciprocal polarization rotation.  

Significant efforts have been taken to reduce, compensate, or even eliminate the 

linear birefringence. Given the realities of fabrication, it is practically impossible to 

realize a perfectly square waveguide, as birefringence should be reduced to the order of 

10-5  [6]. Also, the deposition of a thin film on a substrate results in stress induced 

birefringence. Instead, methods to compensate one source of birefringence with another 

are used such that the net linear birefringence is zero  [31]. This usually involves some 

kind of post-fabrication device etch trimming  [32] or capping with another material. 

Impressive isolations over 32dB were achieved over 150nm  [33], although it used an 

off-axis launch polarization into the waveguide, which is difficult to replicate in a fully 

integrated platform. Quasi phase-matching can also be used to overcome linear 

birefringence, as it introduces a spatial modulation parameter to counteract the beat 

length. As long as the beat length is known, the birefringence can be overcome by 

flipping the magnetic field periodically  [34], or only incorporating the magnetic material 

periodically  [35,36]. However, this is also a highly wavelength selective process, since 

the beat length is inherently wavelength dependent.  

In addition to these “tricks” and workarounds to the birefringence issue, the 

waveguide Faraday isolator still requires a reciprocal polarization converter. While full 

TE to TM polarization conversion has been widely studied in silicon photonics  [37], and 

one such converter is presented in Chapter 5, half-polarization, or 45-degree conversion 

is difficult. As shown in Figure 2.5, the full waveguide Faraday isolator requires a 

polarizer orientated at a 45-degree angle, or a 45-degree reciprocal polarization rotator. 
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While commonly found in free-space optics, waveplates are not commonly used in 

integrated optics due to design and fabrication complexity. Various designs have been 

demonstrated, utilizing asymmetric waveguide cross-sections such as slanted 

sidewalls  [38,39], slot waveguides  [40], or L-shaped waveguides  [41], among other 

designs. Other workarounds have been to incorporate use the magneto-optic Cotton-

Mouton effect  [42] or radiating the converted mode out by engineering the modal cutoff 

conditions in the waveguide  [17]. While each design has its merits and drawbacks, these 

are not commonly found photonic components such as power splitters or polarization 

splitters. As a result, there has not been a fully integrated waveguide Faraday isolator 

(including the polarization components) on semiconductor substrates to best of our 

knowledge. 

The second method of obtaining efficient nonreciprocity on a semiconductor 

platform is the nonreciprocal loss effect. There have been several demonstrations of 

isolators based on this phenomenon, and the basic operating principle and schematic is 

shown below in Figure 2.6. Essentially, the structure is a III-V semiconductor optical 

amplifier (SOA) with a magneto-optic coating. Here, the magnetic field is perpendicular 

to the propagation direction. This is also known as the Voigt configuration.  
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Figure 2.6: Schematic of using a MO waveguide in the Voigt configuration to achieve 
nonreciprocal loss and phase shift. 

In the Voigt configuration, the waveguide experiences a different effective index  

∆n𝑀𝑂 (real and imaginary) for forward and backward direction of light. For NRL based 

isolators, the waveguide design is such that the imaginary component of ∆n𝑀𝑂 is large, 

which leads to different optical loss in the forwards and backwards direction. In the case 

that the real part of ∆n𝑀𝑂 is much more significant than the imaginary part (transparent 

magneto-optic materials), the effect is classified as nonreciprocal phase shift. The origins 

and derivations of this effect is covered in much more detail in Section 2.4.  

Unlike the Faraday isolator, the NRL isolator operates entirely within one 

polarization, and does not require any phase matching conditions or polarization 

rotators. This approach makes use of highly absorbing ferromagnetic materials such as 

iron or cobalt in conjunction with III-V gain material, which can compensate for the 

optical loss. There have been multiple demonstrations of these devices for TE  [43] and 

TM polarization  [44]. Perhaps most importantly of all, the advantage of NRL based 

isolators is their inherent compatibility with III-V lasers. To date, the only full integration 

of laser with isolator has been the demonstration of a DFB with NRL based isolator  [45]. 

However, the isolation was only 4dB, which is not sufficient for practical applications. 
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The forward propagation losses are large (14.1 dB/mm), which is on par with the 

isolation (14.7 dB/mm) in the device. It is difficult to achieve transparency with the Fe 

coated SOA. By design, the propagation losses and isolation ratio cannot be decoupled, 

since larger confinement in the lossy ferromagnetic material is needed to achieve high 

isolation. Finally, amplified spontaneous emission in the backwards direction from the 

SOA can never be completely isolated, which will reach the laser diode. As a result, NRL 

and “active” optical isolators in general may not be applicable to PIC, despite their 

material and process compatibility with semiconductor lasers.  

2.4 Nonreciprocal phase shift 

Due to the shortcomings of the Faraday based waveguide isolator and the NRL 

isolator, researchers turned to NRPS based isolator  [46], which should be lower loss 

than NRL devices and less complex than Faraday isolators. In fact, all the devices 

discussed in this work operate based on nonreciprocal phase shift (NRPS). As previously 

mentioned, NRPS arises when the directions of light and magnetic field are 

perpendicular, known as the Voigt configuration. The following section uses the same 

coordinate system as Figure 2.1, in which z is out the page, x is vertical, and y is 

horizontal. 

Consider an optical waveguide partially or fully comprised of a magnetic-optic 

material in an external magnetic field. The permittivity tensor of each material is 

described by the following equation.  
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𝜺 = (

𝜀𝑥𝑥 0 0
0 𝜀𝑦𝑦 0

0 0 𝜀𝑧𝑧

)+ K(

0 𝑀𝑧 −𝑀𝑦
−𝑀𝑧 0 𝑀𝑥
𝑀𝑦 −𝑀𝑥 0

) 

(2.9) 

K is a coefficient which has a real part corresponding to Faraday ellipticity, and an 

imaginary part that is proportional to the Faraday rotation 𝜃𝐹   [2]. For garnets such as 

Ce:YIG, the Faraday ellipticity is generally ignored. For isolators based on NRL in the 

previous section, the real part of K is crucial, and cannot be ignored  [47]. M is the 

magnetization of the material, which is proportional to the external magnetic field in 

that direction. Together, the product can be written as follows  [48]. Here, 𝜃𝐹
𝑥,𝑦,𝑧

 refers 

to the saturated Faraday rotation of the material.  

𝐾 ∙ 𝑀𝑥,𝑦,𝑧 = 𝑗 (
2𝜃𝐹

𝑥,𝑦,𝑧
∙ 𝑛0

𝑘0
) 

(2.10) 

Depending on the material used, the magnetization of the material is easier in certain 

axes, as was previously discussed. Therefore, the Faraday rotation saturates at different 

field strengths for depending on the orientation of the magnetic fields. When the 

magnetization is not saturated, a linear dependence between the field strength and 

Faraday rotation is assumed, as evident by linear nature of the Verdet constant. For the 

devices in this work, the propagation direction is in the z-axis, while the magnetic field 

is orientated in the x or y-axis, meaning 𝑀𝑧 is equal to zero. Thus, Equation 2.X can be 

simplified as follows. 
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𝜺 = (

𝜀𝑥𝑥 0 −𝐾𝑀𝑦
0 𝜀𝑦𝑦 𝐾𝑀𝑥
𝐾𝑀𝑦 −𝐾𝑀𝑥 𝜀𝑧𝑧

) = 𝑛0
2 (
1 0 0
0 1 0
0 0 1

) + ∆𝜺 

(2.11) 

The NRPS is often calculated using perturbation theory, since the off-diagonal terms 

are much smaller than the diagonal terms, and ∆𝜺 can be treated as a perturbation. This 

approach leads to the following equation for the NRPS (∆β)  [49]. It should be noted that  

∆β = β𝐹𝑊 − β𝐵𝑊, which is double the change from the unperturbed state β.  

∆β =
2𝜔𝜀0∬𝐸

∗∆𝜀𝐸

∬(𝐸 × 𝐻∗ + 𝐸∗ × 𝐻)𝑧
𝑑𝑥𝑑𝑦 

(2.10) 

This equation can be directly used to calculate the NRPS in any scenario but can be 

simplified further under some assumptions to provide intuition on how the modal shape 

should be designed. First, the cases in which the magnetic field is purely x-orientated 

∆β(M𝑥) or y-orientated ∆β(M𝑦)are considered. Second of all, the semivectorial 

approximation is used, such that 𝐸𝑦 = 0 and 𝐸𝑧 =
𝑗

𝛽

𝜕𝐸𝑥

𝜕𝑥
 for TE modes, and 𝐸𝑥 = 0 and 

𝐸𝑧 =
𝑗

𝛽

𝜕𝐸𝑦

𝜕𝑦
 for TM modes. Already, the polarization dependence of the NRPS is clear. The 

off-diagonal terms 𝑲𝑴𝒙 and 𝑲𝑴𝒚 couple the longitudinal field component (Ez) with one 

of the transverse components (Ey or Ex respectively). If Ex is negligible for TM polarized 

modes, and Ey is negligible for TE polarized modes, then ∆β(M𝑥) is only nonzero for TM 

polarization and ∆β(M𝑦) is nonzero for TE polarization. Hence, a magnetic field in-plane 

but perpendicular (x) to light propagation (z) will be referred to as the TM configuration. 

Likewise, a magnetic field out-of-plane but perpendicular (y) to light propagation (z) will 
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be referred to as the TE configuration. Under these approximations, the following 

equations are valid for TM mode NRPS and TE mode NRPS respectively  [48].  

∆β𝑇𝑀(M𝑥) =
−4𝑗𝜔𝜀0
β𝑇𝑀

∬𝐸𝑦
𝜕𝐸𝑦
𝜕𝑦

(𝐾𝑀𝑥)

∬(𝐸 × 𝐻∗ + 𝐸∗ × 𝐻)𝑧
𝑑𝑥𝑑𝑦 

(2.12) 

∆β𝑇𝐸(M𝑦) =
4𝑗𝜔𝜀0
β𝑇𝐸

∬𝐸𝑥
𝜕𝐸𝑥
𝜕𝑥

(𝐾𝑀𝑦)

∬(𝐸 × 𝐻∗ + 𝐸∗ × 𝐻)𝑧
𝑑𝑥𝑑𝑦 

(2.13) 

Note that if K is purely imaginary (corresponding to Faraday rotation), the resulting 

change in β is strictly real, hence the term NRPS. To simultaneously achieve NRPS for 

both polarizations requires magnetization in both x and y, which has been investigated 

by several researchers  [50–52], although optical isolation has not been realized.  

Furthermore, the waveguide geometry is crucial to the calculation of NRPS, as the 

cross-sectional integral dictates. In fact, only asymmetric profiles result in significant 

NRPS. To analyze this further, two waveguide geometries are considered, as shown in 

Figure 2.7. For now, only the fundamental TE and TM mode of each waveguide is 

considered.  
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Figure 2.7: Electric field profiles for a strip and rib MO waveguide. 

In the first case, a waveguide consists of a strip waveguide made of MO material 

(assume n = 3.45) surrounded by nonmagnetic material (assume n = 1.45) such that is 

symmetric in both x and y directions. The actual indices here are somewhat irrelevant, 

as the focus is on the symmetry in the waveguide. A strip waveguide has no NRPS for TE 

or TM modes. The primary field component is exactly even in either direction, meaning 

its derivative is exactly odd. Therefore, the numerator for either case is exactly an odd 

function, which will integrate to zero.  

In the second case, a rib waveguide is made in the MO material surrounded by 

nonmagnetic cladding. Such a waveguide is symmetric in x and asymmetric in the y-

direction. Therefore, there exists a NRPS for the TM polarization, since Ey is asymmetric 

in the y-direction. There is no NRPS for the TE polarization, since Ex is exactly even and 

Ez is exactly odd in the x-direction.  

To enhance the NRPS effect, the asymmetry in the waveguide must be increased. This 

can be done in one of two ways. If the magnetization in the waveguide can also be an odd 
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function, such as by flipping the magnetization in half the waveguide, the resulting NRPS 

can be significant, even if the waveguide index profile itself is symmetric. Alternatively, 

using different materials as cladding on each side increases the asymmetry. In fact, it 

was proposed that using a semiconductor core with MO cladding on one side of the 

waveguide provided a significant boost to the NRPS. To illustrate this, the following two 

waveguide configurations are analyzed in Figure 2.8. Here, only the relavant 

polarizations to each waveguide configuration is used. The core in the simulation has 

index 3.45, the MO material has index 2.2, and the non-MO cladding has index 1.45.  

 

Figure 2.8: Electric field profiles for two waveguides where the MO material is used as the 
cladding rather than the core. 

In the first case, the MO material serves as a cladding and is directly above (or below) 

a nonmagnetic waveguide, and the TM polarization is considered since the asymmetry 

is vertical. This is the configuration used for all the devices in Chapters 3 and 4. Only the 



 

 

38 

field components that penetrate the MO region contribute to the integrals in Equations 

2.12 and 2.13. Therefore, the Ey*Ez product does not cancel itself out, as the bounds of 

the integral have essentially been changed to cover half of the odd function Ez. In the 

second case, the MO material side by side with the semiconductor core. Waveguides 

using this configuration show significant NRPS for TE polarization, are explored in 

Chapter 5. In either case, the non-MO cladding should have an index well below the index 

of the MO cladding to ensure significant modal overlap with the MO material. Therefore, 

high index contrast platforms such as SOI have the advantage of low contrast III-V or SiN 

platforms when considering NRPS.  

Finally, the placement of the boundary between the core and the MO material is 

critical. For optimal NRPS, the boundary is placed near the maxima of the mode field. 

The reasoning behind this is that the boundary causes a discontinuity in 
𝜕𝐸𝑦

𝜕𝑦
or 

𝜕𝐸𝑥

𝜕𝑥
, as it 

is effectively a delta function, which causes the product to be large. Another potential 

improvement could be to use MO materials with different magnetizations on each side 

of the semiconductor core. However, given the materials and platforms available, this 

was not given serious consideration. 

The actual calculation of the NRPS is straightforward provided a modal analysis tool 

such as Lumerical MODE or FIMMWAVE is available to solve for the necessary field 

components in Equation 2.10. Alternatively, a finite element mode (FEM) solver taking 

into account the nonreciprocal effects can be used  [53]. For integration of Ce:YIG with 

silicon waveguides, the difference between the FEM solver and the perturbative 

approach is only 3%, while the difference between the FEM solver and the semivectorial 

approximation of the perturbative approach is 10%. In this work, the FEM solver is used 
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to optimize the waveguide cross-section to provide the largest NRPS. This process is 

detailed in Chapter 3, and the resulting waveguide is used throughout all the devices in 

this work.  

Once optimized, the NRPS effect can be used in multiple interferometric structures 

to achieve isolation. Both microring (Chapter 3) and Mach-Zehnder (Chapter 4) 

structures are explored. Other device architectures using NRPS have been demonstrated 

such as nonreciprocal directional couplers  [54], nonreciprocal multimode imaging 

devices  [55], and tapered mode converters  [56] have been studied, although their 

performance is limited.  

2.5 – Methods for applying a magnetic field 

The operation of a MO based isolator requires a magnetic field. Traditionally, an 

external magnet is packaged with the isolator to provide a static magnetic field. This is 

undesirable for an integrated isolator, as the magnet adds significant bulk and creates 

challenges for packaging. It has been shown that latching thin-film garnets can be 

achieved by incorporating europium during growth to lower the saturation point, 

offering magnet-free operation  [57]. However, the magnetization direction is out-of-

plane, and therefore the film must be flipped to be perpendicular to light 

propagation  [58]. This approach has drawbacks when considering the planar nature of 

waveguides in PIC, as it can only be placed on the edge of the chip or placed in grooves 

that are pre-etched into the chip.  

One solution is to fabricate an electromagnet directly on chip. The electromagnet 

provides a variable magnetic field strength and a thermal tuning mechanism. This 
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flexibility is extremely important for an integrated device, as it can account for 

fabrication imperfections or material variability. For example, the magnetic field can be 

tuned to be slightly stronger if the Faraday rotation of the garnet is weaker than 

expected. Furthermore, some isolator geometries such as the microring isolator 

described in Chapter 3 require a radially orientated magnetic field, which is difficult to 

achieve with external magnets without compromising the size of the ring [59] or 

sacrificing overlap between the garnet and the resonator [18].  

For an NRPS based optical isolator operating for TM mode, the magnetic field must 

be transverse to the waveguide, so the electromagnet should be placed on top of the 

waveguide, as shown in Figure 2.9. This configuration is used in almost all the devices in 

this work.  

 

Figure 2.9: Schematic of integrated electromagnet on the backside of the Ce:YIG 

Since magnetic field strength decays with distance, it is important to place the 

electromagnet near the waveguide core. This is also crucial since power dissipation for 

a given magnetic field in the electromagnet scales quadratically with the distance to the 

waveguide. Of course, there needs to be a spacer between the MO material and the 
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electromagnet in order to prevent excess optical loss. The material and thickness of this 

spacer is determined by the fabrication and process used. For the heterogeneous 

process, this waveguide to electromagnet distance is minimized by removing the 

substrate of the bonded garnet, often using a mechanical polishing technique. This is 

discussed in Chapter 3, and usually results in a spacer layer between 2 and 10 microns 

thick. A multicoil geometry for the electromagnet can also be also adopted to reduce the 

drive current  [60]. While this does not reduce power consumption, it does reduce the 

power consumption, it reduces the current density in the electromagnet, which is 

important for avoiding electromigration based failure mechanisms  [61]. COMSOL 

Multiphysics simulations are performed on 1 and 3 coil electromagnets spaced at a 

distance 2 and 8 microns away from the MO material. The resulting magnetic field and 

temperature change is shown in Figure 2.10.  

 

Figure 2.10: Simulations on the magnetic field strength and temperature as a function of spacer 
thickness and number of coils. 

The combined effects of the multicoil electromagnet and thinner spacer layer result 

in significant improvement in terms of the efficiency of the magnet. However, there are 

diminishing returns in adding more coils since the outer coils contribute less and less to 
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the transverse magnetic field. The same goes for reducing spacer layer thickness. In 

Figure 2.9, a linear shape is assumed for the electromagnet, as it follows a straight 

waveguide. In the case that the electromagnet is circular, which is useful when it is 

placed above a ring resonator, the diminishing returns is even more significant, and the 

resulting magnetic field strength is highly sensitive to the radius of the circle. For 

practical purposes, 3 coils are enough.  

Even with the multicoil solution, the total field strength is on the order of <100 Oe, 

even when extrapolating Figure 2.10 to higher currents. Therefore, this solution works 

best when paired with a MO material with low saturation magnetization, such as Ce:YIG 

in its easy axis (x-direction). When trying to magnetize Ce:YIG in the hard axis, much 

stronger fields on the order of 2kOe are needed, as was shown in Section 2.2. An 

integrated electromagnet solution is not practical this point, and stronger magnetic field 

sources are needed. Testing devices in this configuration is covered in Chapter 5.1.  

The major downside with using an integrated electromagnet is the power 

consumption. One approach could be to deposit a planar thin-film permanent magnet 

that is deposited on top of the garnet. The remnant magnetization for the easy axis of 

Ce:YIG is fairly weak  [62], and is prone to being demagnetized. Instead, it is possible to 

deposit a material with high magnetization and coercivity such as samarium cobalt on 

the backside of the garnet  [63]. Once again, a spacer layer such as silica is needed to 

avoid optical losses in the thin-film magnet. This film can be magnetized locally using an 

on-chip electromagnet, which allows for more versatile geometries. Ideally, only a short 

pulse of current is needed to magnetize the thin film, after which it retains the field  [64]. 

This approach is attractive since it maintains a small form factor, while eliminating any 
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steady state power consumption in the isolator. Further studies should be performed to 

determine reliability and sensitivity to demagnetization of such an approach. 

Summary 

Conventional optical isolators and circulators operate based on Faraday rotation, 

which is a nonreciprocal phenomenon that arises when light interacts with an external 

magnetic field. This effect can be significantly enhanced by using magneto-optic 

materials such as the iron garnet family of materials. Incorporating rare earth materials 

such as cerium, yttrium, or terbium in the garnet are known to further increase Faraday 

rotation, leading to the selection of cerium-substituted yttrium iron garnet (Ce:YIG) as 

the material of choice for the devices in this work. When considering waveguide-based 

isolators and circulators, nonreciprocal phase shift and loss is observed when the 

magnetic field is placed perpendicular to the waveguide. Nonreciprocal phase shift is the 

preferred effect among these two, as it is significant even when the magneto-optic 

material is transparent, which is a key criteria to building photonic integrated circuits. 

Finally, the source of the magnetic field can also be integrated onto the chip with the use 

of an electromagnet. For optimal use, the electromagnet can contain multiple coils and 

should be placed as close to the magneto-optic waveguide as possible. These materials, 

designs, and effects are exploited to fabricate ring resonator-based isolators (Chapter 3) 

as well as interferometer-based isolators (Chapter 4). 
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Chapter 3                                                                                                

Microring based nonreciprocal devices 

The microring resonator has been arguably the most studied device in integrated 

photonics over the last decade.  The term “microring” is used loosely to include all sorts 

of waveguide based integrated resonators with varying radii and shape. Silicon 

photonics has been an ideal platform for ring resonators, as the high index contrast 

between the silicon core and surrounding silicon dioxide cladding allow for tight 

confinement of the optical mode and very small bend radii. An overview of silicon based 

microrings can be found in [1], and some basic concepts will be presented in Section 3.1. 

The following sections will then introduce nonreciprocal materials and properties into 

the microrings to realize resonant optical isolators and circulators [2].  

3.1 Microring resonator 

Like any optical resonator, the microring has a resonant condition for which the light 

adds up constructively upon making a round-trip. The resonant condition is satisfied 

when the accumulated phase of light in the resonator (𝛽𝐿) is an integer multiple of 2π. 

Typically, it is more convenient to express this resonant condition in terms of the 

wavelength, as given in Equation 3.1), where m is an integer and L is the physical round 
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trip length in the cavity. The spacing between adjacent resonant wavelengths is known 

as the free spectral range (FSR) and given in Equation 3.2. Note that this equation 

assumes that the FSR is much smaller than the resonant wavelength.  

 
𝜆𝑚 =

𝑛𝑒𝑓𝑓 ∙ 𝐿

𝑚
 

(3.1) 

 
𝐹𝑆𝑅 =

𝜆2

𝐿 ∙ 𝑛𝑔
 

(3.2) 

Typically, the ring resonator is accessed through the placement of one or more “bus” 

waveguides that provide evanescent coupling in and out of the resonator. An “all-pass” 

configuration is shown in Figure 3.1 for which a single waveguide is in proximity to the 

ring with radius R and circumference L. The single-pass coupling to the ring is denoted 

as κ while the single-pass transmission along the bus waveguide is t. In most scenarios, 

lossless coupling is assumed such that κ2 + t2 = 1. Propagation loss in the ring itself is 

considered, with a power attenuation constant α. The fields 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡represent the 

input and output of the resonator, while 𝐸𝑟1 and 𝐸𝑟2 are the fields inside the resonator 

immediately prior and after the coupling region. 

 

Figure 3.1: Schematic and SEM image of an all-pass ring resonator 
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The transfer function can be easily derived via a series of relations as shown in the 

following equations. 

𝐸𝑜𝑢𝑡 = 𝑡𝐸𝑖𝑛 + 𝜅𝐸𝑟1 (3.3) 

𝐸𝑟2 = 𝜅
∗𝐸𝑖𝑛 + 𝑡

∗𝐸𝑟1 (3.4) 

𝐸𝑟1 = 𝑒
(𝑗𝛽−𝛼/2)𝐿 ∙ 𝐸𝑟2 (3.5) 

Substitution of the equations shown above and squaring the field intensities results 

in a well-known power transfer function for the all-pass ring resonator [3].  

|𝐸𝑜𝑢𝑡|
2

|𝐸𝑖𝑛|2
=
𝑡2 + 𝑒−𝛼𝐿 − 2𝑡𝑒−𝛼𝐿/2𝑐𝑜𝑠(𝛽𝐿)

1 + 𝑡2𝑒−𝛼𝐿 − 2𝑡𝑒−𝛼𝐿/2𝑐𝑜𝑠(𝛽𝐿)
 

(3.6) 

When the wavelength is off-resonance such that 𝛽𝐿 ≠ 2𝑚𝜋, and under the 

assumption that 𝛼is small such that 𝑒−𝛼𝐿~1, Equation 3.6 implies that |𝐸𝑜𝑢𝑡| and |𝐸𝑖𝑛| 

are equal in magnitude, hence the term “all-pass”. On the other hand, when the resonant 

condition 𝛽𝐿 = 2𝑚𝜋 is satisfied, the magnitude of the transfer function depends on the 

strength of the coupling as well as the loss in the resonator. When the power lost per 

round trip is equal to the single pass coupled power into the ring, mathematically 

|𝜅|2 = (1 − 𝑒−𝛼𝐿) or alternatively |𝑡|2 = 𝑒−𝛼𝐿 , Equation 3.6 becomes equal to zero. This 

is known as the critical coupling regime of the ring. Under this condition, all the resonant 

light is eventually dissipated in the ring, and none of it reaches the output. The extinction 

ratio of the resonator is defined as the ratio between the off-resonance transmission 
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(𝛽𝐿 = 2𝑚𝜋 + 𝜋)  and on-resonance transmission (𝛽𝐿 = 2𝑚𝜋). The equation for the 

extinction ratio (ER) of an all-pass ring is given in Equation 3.7. 

𝐸𝑅 =

(𝑡 + 𝑒−𝛼𝐿/2)
2

(1 + 𝑡𝑒−𝛼𝐿/2)2

(𝑡 − 𝑒−𝛼𝐿/2)2

(1 − 𝑡𝑒−𝛼𝐿/2)2

⁄  

(3.7) 

Realistically, the extinction ratio is never infinite, even if the critical coupling 

condition is satisfied. This can be due to a variety of reasons such as polarization 

conversion in bent waveguides [4], interference with other Fabry-Perot modes, 

backscattering in the ring waveguide [5] or coupler [6], or losses in the coupling 

region [7], for example to higher order modes [8]. The extinction ratio may also be 

limited due to measurement capabilities, such as the limited polarization extinction ratio 

of lensed fibers.  

The other commonly used ring resonator device is known as an “add-drop” 

configuration, in which the ring is connected to two bus waveguides. This creates a 

device with four ports, as shown in Figure 3.2. Traditionally, if light is input from port 1, 

then port 3 is known as the drop port, while port 2 is the thru port. Port 4 is referred to 

as the add port, and only interacts with the light from port 1 through backscattering in 

the ring or couplers, which is assumed to be negligible for simplicity. 
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Figure 3.2: Schematic and SEM image of an add-drop ring resonator 

The transfer functions for the add-drop ring configuration are shown below [1].  

|𝐸2|
2

|𝐸1|2
=
𝑡1
2 + 𝑡2

2𝑒−𝛼𝐿 − 2𝑡1𝑡2𝑒
−𝛼𝐿/2𝑐𝑜𝑠(𝛽𝐿)

1 + 𝑡1
2𝑡2

2𝑒−𝛼𝐿 − 2𝑡1𝑡2𝑒−𝛼𝐿/2𝑐𝑜𝑠(𝛽𝐿)
 

(3.8) 

|𝐸3|
2

|𝐸1|2
=

(1 − 𝑡1
2)(1 − 𝑡2

2)𝑒−𝛼𝐿/2

1 + 𝑡1
2𝑡2

2𝑒−𝛼𝐿 − 2𝑡1𝑡2𝑒−𝛼𝐿/2𝑐𝑜𝑠(𝛽𝐿)
 

(3.9) 

The ER for the thru port, as defined as the ratio between off-resonance and on-

resonance transmission is given in Equation 3.10. The ER for the drop port, as defined 

as the ratio between on-resonance to off-resonance transmission (flipped as to keep 

positive ER) is given in Equation 3.11.  

𝐸𝑅𝑡ℎ𝑟𝑢 =

(𝑡1 + 𝑡2𝑒
−𝛼𝐿/2)

2

(1 + 𝑡1𝑡2𝑒−𝛼𝐿/2)2

(𝑡1 − 𝑡2𝑒
−𝛼𝐿/2)2

(1 − 𝑡1𝑡2𝑒−𝛼𝐿/2)2

⁄  

(3.10) 
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𝐸𝑅𝑑𝑟𝑜𝑝 =

(1 − 𝑡1
2)(1 − 𝑡2

2)𝑒−𝛼𝐿/2

(1 − 𝑡1𝑡2𝑒−𝛼𝐿/2)2

(1 − 𝑡1
2)(1 − 𝑡2

2)𝑒−𝛼𝐿/2

(1 + 𝑡1𝑡2𝑒−𝛼𝐿/2)2

⁄  

(3.11) 

From Equation 3.10, the critical coupling condition occurs when |𝑡1|
2 = |𝑡2|

2𝑒−𝛼𝐿. 

However, symmetric coupling is used more often in practice, such that 𝑡1 = 𝑡2. This is 

especially true when any of the ports can be used as an input port. When engineering 

the response of an add-drop filter, most of the design choices lie in the engineering of 

the coupling to the ring. This is because the loss in the ring is often a combination of 

waveguide design as well as fabrication prowess, which may be outside of the 

researcher’s control. Furthermore, the critical coupling condition is often hard to hit, and 

most resonators in practice are undercoupled or overcoupled depending on the 

application.  

The final relevant parameter of the microring as it pertains to this work is the quality 

factor (Q) of the resonator. The Q-factor is the ratio of stored energy in the resonator to 

the power loss per round trip in the resonator. It is also a comparison of the sharpness 

of the resonator relative to the resonance frequency, given by the resonance wavelength 

of the resonator divided by the full-width half maximum (FWHM) of the resonance 

spectrum. The Q-factors for an all-pass and add-drop ring resonator are given in 

Equations 3.12 and 3.13 respectively [1].  

𝑄𝑎𝑙𝑙−𝑝𝑎𝑠𝑠 =
𝜋𝑛𝑔𝐿√𝑡𝑒−𝛼𝐿/2

𝜆(1 − 𝑡𝑒−𝛼𝐿/2)
 

(3.12) 
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𝑄𝑎𝑑𝑑−𝑑𝑟𝑜𝑝 =
𝜋𝑛𝑔𝐿√𝑡1𝑡2𝑒−𝛼𝐿/2

𝜆(1 − 𝑡1𝑡2𝑒−𝛼𝐿/2)
 

(3.13) 

The Q-factors here are otherwise referred to as the loaded-Q of the resonator. They 

take both the intrinsic losses in the resonator as well as the coupling into the resonator 

into account. Often, the intrinsic-Q of the resonator, or the Q-factor in absence of 

coupling into the resonator, is quoted, since it is a direct measurement of the 

propagation losses in the resonator. The loaded quality is related to the intrinsic quality 

factor by Equation 3.14 where the energy losses due to the coupler are also taken into 

account.  

1

𝑄𝑙𝑜𝑎𝑑
=

1

𝑄𝑖𝑛𝑡
+

1

𝑄𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔
 

(3.14) 

In practice, the loaded Q-factor can be immediately calculated from the spectral 

response of the ring resonator, and the intrinsic Q-factor can be estimated by analyzing 

the extinction ratio of the resonance. This equivalence is given in Equation 3.15 for an 

all-pass resonator, where the ± refers to the under and over-coupled regimes 

respectively, and 𝑇(𝜆𝑟𝑒𝑠) is the transfer function (Equation 3.6) evaluated at 

resonance [9]. Finally, the propagation loss in the resonator can be calculated based on 

Equation 3.16 [10].  

𝑄𝑙𝑜𝑎𝑑 =
2𝑄𝑖𝑛𝑡

1 ± √𝑇(𝜆𝑟𝑒𝑠)
 

(3.15) 
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𝛼 =
𝜆𝑟𝑒𝑠

𝑄𝑖𝑛𝑡 ∙ 𝑅 ∙ 𝐹𝑆𝑅
 

(3.16) 

Thus, it is clear from Equation 3.15 that the loaded Q is half of the intrinsic Q at 

critical coupling for an all-pass ring resonator. Furthermore, the inverse relationship 

between loss and Q-factor in Equation 3.16 is apparent and can be used to estimate 

waveguide loss from a ring resonator test structure. This is generally more accurate than 

cutback methods and consumes significantly less footprint than long waveguide spiral 

test structures. However, it should be noted that bend loss and coupler induced loss are 

indistinguishable in Equation 3.16, and the calculated loss values are an overestimate of 

propagation loss.   

3.2 Microring optical isolator 

Design 

The use of resonant devices to enhance nonreciprocal effects such as magneto-optic 

effects has been proposed for over a decade. Photonic crystal based waveguides were 

theoretically studied and proposed to enhance NRPS effects while miniaturizing the 

devices [11,12]. The use of a microresonator to perform optical isolation and circulation 

was first proposed in 2007 [13], with additional theoretical work being carried out in 

the following years [14]. However, it was not until 2011 that the concept was 

demonstrated through the combination of silicon microrings with magneto-optic 

garnet [15,16]. Since then, continuous improvements have been made to increase 

isolation, decrease footprint, and provide fabrication compatibility with other silicon 
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photonic devices. These improvements have led to the microring isolators discussed in 

this section [17–20]. 

The microring optical isolator in this work consists of an all-pass microring-based 

filter that is coupled to a straight waveguide, as schematically shown in Figure 3.3. Both 

the microring and the bus waveguide are made of silicon (nSi=3.44) with a bonded Ce:YIG 

layer (nCe:YIG=2.22), which was previously grown on a substituted gadolinium gallium 

garnet (nSGGG=1.97) substrate. The waveguide is covered with a sputtered silicon dioxide 

cladding (nSiO2=1.44) outside of bonded areas. A radially orientated magnetic field can 

be applied to the ring using an electromagnet that is deposited on the backside of the 

bonded garnet, as discussed in Section 2.5. In the initial demonstration of this device, 

only a single coil was used for the electromagnet. 

 

Figure 3.3: Schematic of the microring isolator 

In this device, forward propagating light is defined as input from the left side, 

coupling light into the clockwise mode in the resonator. Backward propagating light is 

defined as input from the right side, coupling light into the counterclockwise mode. In 

the absence of any radial magnetic field, the device behaves as any other reciprocal ring 

resonator, exhibiting the same transfer function for forward and backward propagating 
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light. Spectrally, the device has the same resonant condition for both clockwise (𝜆𝐶𝑊) 

and counterclockwise (𝜆𝐶𝐶𝑊) modes, resulting in the same resonant wavelength. 

λ𝐶𝑊(𝐻𝑟 = 0) = λ𝐶𝐶𝑊(𝐻𝑟 = 0) (3.17) 

When current is applied to the electromagnet and a radially orientated magnetic field 

is applied to the ring, the Ce:YIG begins to magnetize in a direction that is perpendicular 

to the direction of light propagation. This is identical to the Voigt configuration as shown 

in Figure 3.4, which produces an effective index difference (∆𝑛𝑒𝑓𝑓)and NRPS (∆β) 

between the CW and CCW modes for TM polarized light. This leads to a different 

resonant condition for CW and CCW modes, and a resonant wavelength split (∆𝜆𝑀𝑂) 

between forward and backwards propagating light arises, as given in Equation 3.18. 

Thus, optical isolation is achieved when the resonance of the backwards (CCW) mode is 

aligned to the operating wavelength, as depicted in Figure 3.5. The amount of optical 

isolation is dependent on the extinction ratio of the ring, which is maximized in the 

critical coupling regime. 

 

Figure 3.4: Schematic of the integrated electromagnet on top of the microring isolator 
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Figure 3.5: Depiction of the resonant wavelength split caused by NRPS 

∆𝜆𝑀𝑂 =
∆𝑛𝑒𝑓𝑓

𝑛𝑔
𝜆 

(3.18) 

The design of the isolator begins with optimization of the waveguide cross-section 

in order to provide the strongest NRPS effect. Using the methodology discussed in 

Section 2.4, the NRPS and resonant wavelength split (RWS) is calculated for a range of 

silicon waveguide and Ce:YIG cladding dimensions. The results are plotted in Figure 3.6, 

for TM polarized light at a wavelength of 1550nm and assuming a saturation Faraday 

rotation of -4500 degrees/cm for the Ce:YIG. A width of 600nm for the silicon waveguide 

was simulated, which was chosen for the waveguide to only support a single TM mode 

in both the Ce:YIG clad as well as SiO2 clad regions. Simulations for different widths near 

600nm show similar results, which is expected given the TM polarization of light. 
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Figure 3.6: Simulated results for NRPS and resulting RWS as a function of silicon and Ce:YIG 
thicknesses. 

The final waveguide cross-section is selected to be a 220nm thick by 600nm wide 

silicon waveguide, with a 400nm thick Ce:YIG top cladding. This is near the optimal value 

in the contour plots in Figure 3.6, and easily realizable given the SOI and Ce:YIG wafers 

present at the time. An important detail that needs to be taken into account is the 

presence of a thin oxide layer between the silicon and Ce:YIG that is usually present due 

to the plasma assisted O2 wafer bonding process [21]. The thickness in this work is 

assumed to be 10nm, although AFM measurements later revealed this thickness to be as 

thin as 5nm. Factors such as the presence of native oxide, the oxide activation 

parameters, and the cleaning procedures of the materials prior to the bonding are likely 

to change this thickness. The thickness of this oxide layer is critical to the amount of 

NRPS, since the mode is centered on the Si/Ce:YIG boundary. Thicker oxide layers 

severely degrade the NRPS and RWS, as shown in Figure 3.7. Even a 10nm oxide layer 

decreases the maximum RWS by roughly 20% to a value of 0.55nm. This problem is 

enhanced in devices in which adhesive polymer (BCB) is used in place of the oxide [22]. 

A 60nm thick BCB layer, which is typical, will reduce the NRPS by over 3 times. The oxide 
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thickness variation is also by far the least tolerant to variation, although in practice, 

thickness variation is much less common than width variation during fabrication. 

Fabrication tolerance of the RWS to various parameters is shown in Figure 3.7.  

 

Figure 3.7: Simulations of the sensitivity of RWS with respect to thickness variation in the 
layers of the MO waveguide.  

Once the waveguide cross-section is established, the next step is to simulate the bent 

waveguide that will be in the ring resonator. The key parameters are the bend radius 

and coupling gap between the ring and bus waveguide. The dependence of bend loss on 

radius is simulated with Lumerical MODE and plotted in Figure 3.8 for several 

waveguide parameters such as silicon thickness and width, as well as bonding oxide 

thickness. Intuitively, stronger confinement in waveguides results in smaller bend radii, 

which is apparent from higher bend loss from TM modes compared to TE modes. The 

Ce:YIG thickness is assumed to be 400nm. In all simulations, rings with larger than 25 

micron radius should be free from bend loss.  
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Figure 3.8: Simulations of the bend loss for a variety of MO waveguide geometries with 
different widths and thicknesses. 

The last design parameter is the coupling coefficient κ into the ring resonator from 

the bus waveguide. For a straight-to-curved coupler used in this work, this is a strong 

function of ring radius as well as coupling gap. Generally, the radius of the ring is fixed, 

and the coupling gap is varied, as shown in Figure 3.9 for a 35 micron radius ring. The 

simulation was performed with Lumerical FDTD software, where only the coupling 

region was simulated. The power coupling ratio κ2 is shown as a function of wavelength 

and coupling gap.  
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Figure 3.9: Simulations of the coupling into the MO ring for different gaps ranging from 
140nm to 400nm for a ring radius of 35 microns. 

As previously mentioned, the key to obtaining large optical isolation is to achieve 

near critical coupling to the resonator. As a result, the propagation loss in the ring should 

be estimated. For the first generation of devices, the propagation loss in the resonator 

was estimated in the 20-30dB/cm range based on literature values of 40-60dB/cm loss 

in Ce:YIG and roughly 45% confinement in the Ce:YIG [23]. Given the simulations in 

Figure 3.9, the coupling gap was determined to be between 220 to 260nm, which gives 

roughly 10 to 15% power coupling into the ring. Splits were laid out on mask centered 

around the simulated values. 
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Fabrication 

Fabrication of the devices begins with preparing an SOI wafer of the appropriate 

thickness. The first generation of devices used an 230nm thick silicon device layer on 1 

micron buried oxide (BOX), which was achieved by thinning down a 500nm thick silicon 

device layer SOI wafer via thermal oxidation and buffered HF etching. The oxidation was 

performed in a dry (no water vapor) oxidation furnace at a temperature of 1050C for 24 

hours. The exact oxidation time needs to be fine-tuned, but was generally within 10% of 

the values given by oxide growth calculators [24]. Subsequent fabrication runs used a 

“standard” 220nm silicon device layer on a 2 micron BOX, which was popularized by 

imec. Simulations showed that there is not a significant difference caused by the 10nm 

height difference. The difference in BOX thickness does not affect optical device 

performance, but can be a limiting factor in thermal dissipation, as it inhibits heat from 

flowing from the device layer to the silicon substrate.  

The fabrication procedure is depicted in Figure 3.10. The SOI wafer is patterned 

using an ASML 5500 deep-UV stepper using a positive UV210-0.3 photoresist and AR2 

DUV antireflectant. Through optimization of the lithography dose and focus, gaps and 

lines as small as 200nm can be repeatedly achieved. However, the optimal conditions to 

achieve the smallest dimensions are often different for lines and gaps. Therefore, mask 

bias may be needed if both line and gap dimensions are critically small. The silicon 

waveguides as well as vertical channels (for outgassing) are etched in a single step using 

a C4F8/SF6/Ar etch chemistry in a ICP etcher (Si Deep RIE/Flourine ICP). The exact etch 

parameters varied over different fabrication runs, partially due to the tool being refitted 

and upgraded. An Intellemetrics LEP500 etch rate monitor was later installed on the tool 
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to allow for real-time laser etch monitoring. While all the waveguides in this work were 

etched fully to the BOX, the etch rate monitor ensured that the etch depth would be 

successful, regardless of the etch rate, which is extremely temperature sensitive in the 

tool. Etch optimization was performed multiple times over this work, as etch conditions 

in the tool drift over time. Verticality of the waveguides and smooth sidewalls were 

achieved, as shown in the waveguide SEMs in Figure 3.11.  

 

Figure 3.10: Fabrication flow for integrated optical isolators and circulators 

 

Figure 3.11: SEM images of the silicon waveguides used in the microring isolator prior to 
Ce:YIG bonding. 

After the waveguides are etched and cleaned, both the SOI wafer and Ce:YIG dies are 

prepared for bonding. The Ce:YIG on SGGG is provided courtesy of Professor Tetsuya 
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Mizumoto and Professor Yuya Shoji of Tokyo Institute of Technology. It is a 2” wafer 

measuring roughly 300 microns in thickness. Due to the difficulties in cleaving garnet 

substrates, the individual dies are diced out. Typically, the dies are 5 to 10mm in length, 

and 1-2mm in width, and require special care in handling, especially during cleaning. 

The Ce:YIG appears yellowish in color, while the SGGG substrate is completely 

transparent. It is near impossible to tell which side is “up” once the dies have been diced 

and there is no reference flat. During the cleaning procedure of garnet with acetone and 

isopropanol, it is common to lose track of the correct orientation of the garnet. Tricks to 

keep track of the correct side for bonding include scribing a mark on the backside prior 

to dicing, as well as analyzing the edges of the die for chipping, which is much less 

significant on the side with the thin-film Ce:YIG. Other researchers have prepared the 

Ce:YIG samples with a bevel shape [25]. After cleaning of the samples, an EVG810 tool is 

used to activate the surface of the two materials with an oxygen plasma. This 30 second 

activation is nearly identical to the procedure used for bonding III-V materials to 

silicon [26]. Finally, the activated surfaces of the two are brought into contact, forming 

a spontaneous bond. Since rough alignment is necessary between the Ce:YIG dies and 

the silicon wafer, a Finetech flip-chip bonder is used. Multiple dies can be bonded at 

once, which is usually the case for the devices in this work. Figure 3.12 shows the Ce:YIG 

in various stages of preparation from a full wafer [27] to diced out pieces to 

spontaneously bonded dies on a silicon wafer.  
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Figure 3.12: Images of Ce:YIG/SGGG 2” wafer and individual dies (bonded on Si) 

The transparent nature of the garnet allows for some interesting post-bond 

observations, since the silicon waveguides underneath the Ce:YIG/SGGG is immediately 

visible following bonding. The bond yield can be determined at this point, prior to any 

substrate removal processes. This is often not the case with III-V bonding, in which the 

final bond yield is not known until the substrate removal is complete. Rainbow patterns 

and fringes are often visible following the initial bond, which is indicative of 

delamination. Nine times out of ten, this delamination is caused by vertically protruding 

particulates either on the silicon or Ce:YIG. Depending on the size and height of the 

particle, the delamination may be local, or protrude out to the edge of the die. Some 

microscope images are shown in Figure 3.13 that show the waveguides under the 

bonded Ce:YIG, as well as some bond fail areas stemming from particles. A small particle 

causes only a local delamination, while a larger particle can cause an entire corner to 

delaminate.  
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Figure 3.13: Micrographs of various Ce:YIG/Si bond fails stemming from particulates of 
varying sizes 

Another observation is that sometimes, the surfaces will only be in intimate contact 

in the immediate area where the force was applied during the spontaneous bond (where 

the vacuum was applied by the flip chip bonder to pick up the piece). Other areas are 

often not in direct contact, possibly due to bowing of the wafer or the die. Upon applying 

slight pressure on the back of the bonded die, the dark, well-bonded areas will spread, 

as the materials have some degree of flexibility, until hopefully the entire die is firmly 

bonded, as shown in Figure 3.14. Next, the bond is further strengthened by clamping the 

pieces between a graphite fixture and annealing the parts at 200C for 6 hours. It is very 

much possible that 6 hours is not needed, but the necessary experiments were not 

carried out. Experiments were carried out at 250C and 300C, but anneals at those higher 

temperatures often led to cracked samples, stemming from the large CTE mismatch 

between silicon and Ce:YIG. In the fixture, a flexible graphite sheet is placed directly on 

top of the chip in order to prevent sheer during the anneal. However, it was found that 

this graphite sometimes left residue on the chip, and an additional aluminum foil was 
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used in between the chip and graphite sheet to prevent any residue from sticking to the 

waveguides. Figure 3.15 shows SEM images of the edge of the bonded Ce:YIG die on 

silicon. The dicing leaves a slightly jagged edge, which sometimes is not in intimate 

contact with the silicon. This is consistent with observations made during III-V bonding 

to silicon, in which the edges of the die are common bond fail areas.  

 

Figure 3.14: Progression of Ce:YIG on silicon after bonding, anneal, and substrate removal 
respectively.  

 

Figure 3.15: SEM images of the waveguides entering the bonded Ce:YIG regions, from 
which some chipping can be observed. 

Arguably the most crucial step in the process is the substrate removal following the 

bond and anneal. As mentioned in Chapter 2, the substrate of the bonded garnet must 

be thinned to <10 microns to have efficient magnetic field generation from the 
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electromagnet. This substrate removal is primarily done with a purely mechanical 

grinding process (Allied MultiPrep). The standard III-V substrate removal process 

usually stops when the bonded layer is around 100 microns tall, before a wet etch is used 

to complete the process. An etch stop (InGaAs) layer in the III-V epi is the enabler in this 

process, as it has 1000:1 selectivity with the HCl etch used to etch InP. Unfortunately, we 

are not aware of any similar etch stops that can be included in the SGGG/Ce:YIG stack. 

For all the devices in this work, the grinding process was used all the way to thin the 

substrate from 300 microns to less than 10 microns. This is done through a combination 

of precise leveling (chip to chuck, chuck to polishing arm) as well as using a series of 

progressively finer polishing films. Leveling is crucial, as the waveguides would be 

damaged and scratched if exposed to the polishing film. After some practice, it is possible 

to repeatedly thin down the Ce:YIG to under 10 microns thick. With some patience and 

careful levelling, the substrate can be thinned down to only 5 microns in this work 

without damage to the rest of the chip. The thickness variation across the die and chip 

depends on the levelling but is usually within 2 to 3 microns.  

Further improvements can be made in the substrate removal process. With dynamic 

levelling of the wafer, substrate thickness as thin as 1 micron should be achievable. A 

chemical substrate removal process is advantageous for increased uniformity and 

repeatability but may be difficult to implement for garnets without a dedicated etch stop 

layer. An alternate method for substrate removal could be “smart cut”  [28], in which a 

defect layer is planted in the garnet using heavy ion implantation, and then released 

using thermal or chemical treatment  [29]. If this implantation is done prior to bonding, 

then a thin film of garnet could be transferred to silicon following wafer bonding and 
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subsequent release process. Thus, ion implantation should be deep enough to avoid 

roughening the surface prior to bonding, but not so deep as to increase the distance to 

the waveguide too much. The film release can also be done prior to bonding, but the 

handling of such a thin, brittle garnet film poses a challenge [30]. For monolithic 

processes where the garnet is deposited instead of bonded, the fabrication could be 

further simplified, as the distance between the waveguide and electromagnet can be 

precisely controlled during cladding deposition.  

One issue with a purely mechanical substrate removal process is the residue from 

the grinding. The waveguides should be protected during the process, or the residue 

(mostly garnet) may attach themselves to the silicon and become extremely resistant to 

cleaning. This is shown in Figure 3.16, which led to a run with extremely high loss for 

the waveguides. Several methods were considered and experimented with to protect the 

waveguides including spinning a resist layer or melting a wax layer, as well as to clean 

the waveguides after substrate removal with wet chemistry. Each of these had some 

drawbacks. Putting on a resist or wax layer made it harder to level the chip precisely and 

exposes the chip to more temperature cycling due to the baking. The wet etching in 

sulfuric or phosphoric acid cleaned up the waveguides but came at the cost of 

undercutting the chips. Ultimately, the choice was made to deposit a 1-micron thick 

sputtered (low temperature) SiO2 cladding prior to the substrate removal, as detailed in 

Figure 3.10. With this cladding in place, the residue is far enough away from the optical 

mode that it can be ignored. SEM images of the chip after substrate removal are shown 

in Figure 3.16. A focused ion beam (FIB) image of the cross section is also shown.  
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Figure 3.16: SEM images of the bonded cross-section, as well as the transition into the 
bonded areas after substrate removal is complete. 

After the substrate removal is complete, the only remaining step is to deposit the 

electromagnet. This is doing using a bi-layer PMGI/SPR resist combination to generate 

a controllable undercut of roughly 1 micron, followed by e-beam evaporation of titanium 

(~20nm) and gold (~1500nm). This allows for the metal lines to be spaced closely 

together, which is important when the electromagnet contains multiple coils, as was 

discussed in Section 2.5. However, only a single coil was used in the first demonstration 

of these devices. Images of the completed microring isolators are shown in Figure 3.17. 

 

Figure 3.17: Micrograph and SEM image of an array of completed microring isolators. 
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Characterization 

The optical characterization was carried out at room temperature (20°C) on a 

temperature-controlled stage. Two polarization maintaining (PM) lensed fiber with 2.5-

micron spot size were securely clamped in a fiber rotator and rotated to a TM 

polarization. We measure a polarization extinction ratio of at least 26dB. The PM fibers 

are aligned to the edge couplers of the isolator, and the transmission spectra of the 

device is measured using a tunable laser (Keysight 8160) and synchronized power 

sensor. A 10pm step size was used when scanning a wide wavelength range (>40nm), 

while a much smaller 0.1pm step size was used when scanning across a single resonance 

of the ring.  

The current was applied using a through beryllium copper probes and swept from 0 

to 220mA. To test for isolation, we can either switch the input/output fibers (changing 

propagation direction) or switch the direction of the current (changing magnetic field 

direction). Mathematically, these are equivalent since it is the polarity of the magnetic 

field with respect to the propagation direction of light that causes the NRPS. Practically, 

there are some subtle differences between the two methods, since the forward and 

backwards transmission spectra are not taken simultaneously. When switching the 

input and output fibers, one must take care that both fibers are PM and aligned to the 

TM polarization with similar PER in order to preserve the same launch conditions. If the 

magnetic field is switched instead, one must make sure that all other factors in the 

measurement, especially temperature, stay constant. This is especially important for 

resonator devices, which are very sensitive to temperature. Over the course of this work, 

both testing methods were used multiple times and the results were consistent, 
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regardless of the method used. For the microring isolators, changing the direction of 

current does not significantly affect the temperature of the device, since the 

electromagnet is only a resistor and Joule heating is not affected by the direction of the 

current. Therefore, this is the methodology used for testing, as it is quicker and easier 

than switching fibers.  

The results for the microring isolator with highest isolation ratio is shown in Figure 

3.18, in which 32dB of optical isolation is measured near 1555nm. A total of 80mA was 

supplied to the electromagnet, accounting for 9.6mW of power dissipation given the 

measured 1.5 Ohm resistance of the electromagnet.  

 

Figure 3.18: Experimental results of the microring isolator showing the difference between 
forward and backwards transmission.  

The optical loss of the device is measured by comparing our device to a straight Si 

reference waveguide of the same dimensions, but without the bonded Ce:YIG. Of the 

10dB loss, we simulate 1.2dB of scattering loss at the interfaces between the channel 

waveguide with a silica cladding and the Ce:YIG bonded waveguide using Lumerical 
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FDTD software. The remaining 8.8dB is due to the presence of the Ce:YIG layer. Since the 

length of the bus (3.5mm) is much longer than the isolator (70 micron diameter) due to 

placement of splits on the mask as seen in Figure 3.17, there are the equivalent length of 

eight isolators, including the microstrip and contacts, along the bus waveguide. 

Therefore, the excess loss of a single isolator is (1.2+8.8/8) = 2.3dB. The excess loss can 

be further reduced by considering silicon nitride cladding (n = 2) in place of silicon 

dioxide due to a smaller refractive index contrast with the Ce:YIG (n = 2.22). This is 

consistent with the measurement of the loaded quality factor of the microring to be 

15000 at the critical coupling condition, or an intrinsic Q near 30000. This gives an 

estimate of the total loss in ring to be 19.5dB/cm.  

The MO resonance wavelength split ∆𝜆𝑀𝑂between CW and CCW propagation is 

0.16nm for the 80mA of applied current, which is far below the simulated 0.55nm of 

RWS for Ce:YIG with saturated magnetization. Since the microring is narrowband, any 

resonance split larger than 0.1nm will result in an isolation that is equal to the full 

extinction ratio of the microring, as is the case here. Therefore, a strong magnet and full 

saturation of the Ce:YIG magnetization is not needed for optical isolation. Increasing the 

current increases the magnetic field, which will also increase the RWS. However, the 

increase in current also heats up the electromagnet, which results in a thermal shift 

∆𝜆𝑇in the resonant wavelength. The net effect is a shift ∆𝜆𝑇 ± ∆𝜆𝑀𝑂/2 on the resonant 

wavelength, since ∆𝜆𝑇 is a reciprocal effect, as seen in Figure 3.19. The RWS and thermal 

shift for a resonance is plotted as a function of applied current. 
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Figure 3.19: Measurements of the thermal induced resonance shift on top of the RWS as a 
function of the applied current into the microring isolator. 

The thermal shift ∆𝜆𝑇 increases quadratically with current (linearly with power) as 

expected. This can be used to tune the device to match the operating wavelength of the 

laser or PIC. For this device, the wavelength can be tuned over roughly 0.9nm while 

maintaining high (>20dB) isolation. This is limited by the electromagnet, which was 

observed to degrade at high currents (>250mA). Following device runs showed thermal 

tuning greater than the FSR of the ring, enabling much wider tunability, which is detailed 

in Chapter 5. 

The RWS seems to increase linearly or sub linearly until it rolls over and saturates at 

a value of 0.36nm, which is smaller than the predicted 0.55nm. The primary reason for 

this is the reduction of Faraday rotation at higher temperatures, which was measured to 

be 
𝑑𝜃𝐹

𝑑𝑇
= 44°/𝐾  [31]. Therefore, the RWS is a function of temperature in addition to the 

magnetic field. The local temperature of Ce:YIG has a strong dependence on the applied 

current, as well as the SGGG thickness, as discussed in Chapter 2. For the device 

considered here, the SGGG is measured to be 5 microns thick. The magnetic field and 
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temperature are plotted in Figure 3.20 as a function of current for this device, using 

COMSOL Multiphysics.  

 

Figure 3.20: Simulations of the magnetic field and temperature in the microring isolator as 
a function of applied current. 

Using these simulations, it is possible to fully model the current dependence on ∆𝜆𝑇 

and ∆𝜆𝑀𝑂, as given in Equations 3.19 and 3.20. Table 2 contains the relevant modal 

temperature dependences for each material in the waveguide needed for Equation 3.19. 

The Faraday rotation for Ce:YIG below saturation 𝜃𝐹(𝐻𝑟)was given in Chapter 2, and 

∆λ𝑀𝑂
0  and 𝜃𝐹

0 represent the saturated, room-temperature values of RWS (0.55nm) and 
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Faraday rotation (-4500 deg/cm). The model accurately depicts the device performance 

of the microring isolator, as shown in Figure 3.21. 

∆𝜆𝑇(𝐻𝑟 , 𝑇) =
𝜆

𝑛𝑔
(∑

𝜕𝑛𝑒𝑓𝑓

𝜕𝑛𝑖
𝑖

∙
𝜕𝑛𝑖
𝜕𝑇
)∆𝑇 

(3.19) 

∆𝜆𝑀𝑂(𝐻𝑟 , 𝑇) =
∆λ𝑀𝑂

0

𝜃𝐹
0 [𝜃𝐹(𝐻𝑟) +

𝑑𝜃𝐹
𝑑𝑇

∙ ∆𝑇] 
(3.20) 

 

Figure 3.21: Comparison of experimental and predicted thermal and RWS 

Material Parameter  dni/dT [K-1] dneff/dni 

Ce:YIG 9.1e-5 0.405 

Si 1.86e-4 0.691 

SiO2 1.0e-5 0.275 

Air 1.0e-6 0.021 

Table 3.1: Modal refractive index change with temperature. 

One of the drawbacks of the microring isolator is the limited isolation bandwidth, 

that is unavoidable due to the resonant nature of the device. The isolation bandwidth 

IR(BW) of the device is defined in Equation 3.21 [19]. Here, SFW and SBW represent the 

field transfer functions of the forward and backward directions respectively.  
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IR(BW) = ∫ |𝑆𝐹𝑊(𝜆)|
2𝑑𝜆

𝜆𝐼𝑁+𝐵𝑊/2

𝜆𝐼𝑁−𝐵𝑊/2

∫ |𝑆𝐵𝑊(𝜆)|
2𝑑𝜆

𝜆𝐼𝑁+𝐵𝑊/2

𝜆𝐼𝑁−𝐵𝑊/2

⁄  

(3.21) 

To increase the isolation bandwidth, a device with two cascaded microring isolators 

is fabricated. To provide the largest isolation, the amplitude of the currents in the two 

electromagnet is chosen such that the CCW resonances of the two rings are aligned with 

the input signal wavelength (λIN), while the CW resonances fall apart, at longer and 

shorter wavelength, respectively. A schematic plot of each isolator spectra and the 

cascaded transfer function are shown in Figure 3.22. The light propagates from IN-port 

to OUT-port without much attenuation, while in the opposite direction the light is 

coupled into both of the rings. The fabricated devices are also shown, in which smaller 

microrings with 20 micron radius are used. The rings are separated by 100 microns to 

reduce thermal crosstalk effects, although the effects were still somewhat present. They 

are sufficiently far away from each other that there is no magnetic field crosstalk.  

The device is tested using the same methods as for the single microring isolator. Near 

critical coupling was achieved at 1503nm, in which the forward (CW) and backward 

(CCW) spectrum was recorded in Figure 3.23. The rings were slightly different from each 

other due to fabrication, such that the driving current in ring 1 (195mA) was slightly 

different than that of ring 2 (-170mA) to compensate for the wavelength mismatch. A 

total of 28dB of optical isolation was measured, which is likely limited by the PER of the 

lensed fiber. Upon adding a polarizer to the output fiber, the isolation was measured to 

be as large as 36dB.  
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Figure 3.22: Schematic, micrograph, and principle of operation for the cascaded microring 
isolator. 

 

Figure 3.23: Experimental results of the cascaded microring isolator showing 
nonreciprocal transmission between the forward and backward directions over a larger optical 

bandwidth. 

The isolation bandwidth of the cascaded ring isolator is calculated according to 

Equation 3.21, and compared with that of a single ring isolator. From Figure 3.23, the 

cascaded ring isolator significantly improves the isolation bandwidth, with over 10GHz 

of bandwidth at 20dB of isolation compared with only 2.5GHz for a single ring. Adding 

additional rings could increase the isolation bandwidth further, although other 
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problems will arise. One such problem is an increase in insertion loss, as each ring adds 

some loss, even when off-resonance. Another problem is the addition of more 

electromagnets introduces more power dissipation and heating, which will reduce the 

RWS.  

At most, the 20dB-isolation bandwidth will be equal to roughly half the RWS (around 

20GHz at 1550nm), or the overlap between CW and CCW spectra will be significant, 

leading to increased loss. Therefore, for systems that require wideband optical isolation, 

such as a modulated light source at 25 or 50 GBaud for data communications, the 

microring isolator could be of limited use on its own. A simple workaround to this 

problem is to include an add-drop microring filter in series with the optical isolator. This 

additional ring can be silicon only and have a higher quality factor than the microring 

isolator. Thus, it can filter out all the reflections outside the isolation bandwidth of the 

isolator, as it is more narrowband. Alternatively, A wideband isolator based on a Mach-

Zehnder interferometer which can satisfy these bandwidth requirements is the topic of 

Chapter 4. 

3.3 Microring optical circulator 

Design 

The microring optical circulator makes use of the add-drop ring architecture rather 

than the all-pass architecture used for the isolator. The operating principle is almost 

identical to that of the microring optical isolator, except the light in the resonator is 
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coupled into a second waveguide adjacent to the ring. The device has four optical ports, 

and the light circulates in a nonreciprocal fashion when a radial magnetic field is applied. 

When the magnetic field is pointing radially inwards, the operating wavelength is 

aligned to the CCW resonance of the ring, as in Figure 3.24. Under these conditions, the 

wavelength of light entering from port 1 (red arrow) is not aligned with the ring 

resonance, and therefore the light passes through to port 2. Meanwhile, light injected 

from port 2 (blue arrow) excites the CW ring resonance, and it will be dropped to port 

3. Thus, the circulation direction in this configuration is 1->2->3->4->1. If the magnetic 

field is flipped to a radially outward direction, as shown in the bottom half of Figure 3.24, 

then the same operating wavelength is now aligned to the CW resonance. In this 

alternate configuration, the light circulates from 1->4->3->2->1. Thus, the circulation 

direction can be reconfigured by simply switching the direction of current in the 

electromagnet. This also opens the possibility of using the device as a nonreciprocal 

switching element, which is further discussed in Chapter 7.  
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Figure 3.24: Schematic of microring optical circulator 

For a multi-port device such as a circulator, the transfer function of the device is best 

represented by a scattering matrix. In Equation 3.22, a 4x4 matrix relates the amplitudes 

of the input (𝐴𝑖
+)and output (𝐴𝑗

−) fields at each of the ports, with the assumption that 

backscattering is negligible. 

(

𝐴1
−

𝐴2
−

𝐴3
−

𝐴4
−

) = (

0
S21
0
S41

S12
0
S32
0

0
S23
0
S43

S14
0
S34
0

)

(

 
 
𝐴1
+

𝐴2
+

𝐴3
+

𝐴4
+
)

 
 

 

(3.22) 

Furthermore, the device is designed with symmetric couplers on each side of the 

ring, such that S12 = S34, S21 = S43, S14 = S32, and S41 = S23. Critically, the device is 

nonreciprocal, so the scattering matrix is not symmetric S𝑖𝑗(𝜆) ≠ S𝑗𝑖(𝜆). Instead, given 

the equivalence of switching magnetic field and propagation direction, Equation 3.23 is 

true.  
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S𝑖𝑗(𝜆 ± ∆𝑀𝑂 2⁄ ) = S𝑗𝑖(𝜆 ∓ ∆𝑀𝑂 2⁄ ) (3.23) 

The design of the circulator follows the same principles as the isolator, in which the 

NRPS is maximized. Therefore, it has the same waveguide cross-section. The selection of 

coupling gap is once again key to the design, as it determines the extinction ratio and 

isolation ratio as given in Equations 3.10 and 3.11. The gap and the ring-waveguide 

power coupling coefficient (K=κ2) has been chosen so that S41, S34, S23 and S12 have 

the same amplitude at the operating wavelength 𝜆𝐼𝑁 . This occurs at a coupling power of 

roughly 11.9%, as shown in Figure 3.25. An alternate design strategy is to select the 

coupling gap such that the isolation ratio between the different port combinations is the 

same. This results in an optimal coupling gap of 10.5%.  

Ultimately, the difference between these designs was within the fabrication accuracy 

of the gap, which is targeted to be ±15nm. The splits on mask were centered around a 

gap of 220nm. Simulations predict an isolation ratio of 13dB between all the ports. In 

some cases, the isolation ratio between two of the ports is more important than the 

others, since the input port is fixed. Examples of this include the use of a circulator in a 

fiber Bragg grating sensor. In these scenarios, the design of the circulator can be changed 

such that the two coupling gaps are not the same, such that the ring is in the critical 

coupling regime. 
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Figure 3.25: Extinction ratio between various ports for different design criteria regarding 
the coupling strength into the ring. 

Characterization  

The device is fabricated using the same procedure as the microring optical isolator. 

We characterize the device at room temperature (20°C) using a similar setup to the one 

used for the optical isolator. A polarization maintaining (PM) lensed fiber as input, while 

fibers are aligned to Ports 2 and 4 simultaneously. This is done by angling the facets on 

the ports in opposite directions, such that two fibers can approach the chip on the same 

side at once, as shown in Figure 3.26. This can also be realized by using a PM fiber array 

such as the one offered by Chiral Photonics  [32]. The tunable laser is swept and the 

power at each of the ports is recorded. Finally, the measurement is repeated for each of 

the input ports of the circulator and depicted in Figure 3.27 for an operating current of 

200mA. The experimental results on the left match up extremely well with the 

simulations on the right. 
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Figure 3.26: Picture of test setup used to characterize optical circulators 

 

Figure 3.27: Simulated and experimental spectra of the transmission through the microring 
circulator operating near 1558nm.   

From the experimental results, the scattering matrix can be extracted at the 

operating wavelength of 1558.4nm, as shown in Table 3.2. The missing entries are paths 

that are only obtainable due to strong back-reflection. The values of S13, S31, S24, and 

S42 are very low (less than -40dB), and the measurement to quantify the backscattered 

light at each port (Sii, for i=1,2,3,4) is dominated by reflections off the polished facet as 

well as the lensed fiber used for the coupling. 
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 Input Port 
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t 
P
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rt

 

 1 2 3 4 

1 - -20.7 - -10.5 

2 -9.7 - -21.0 - 

3 - -12.4 - -22.0 

4 -17.2 - -11.0 - 

Table 3.2: Measured S-matrix values for the optical circulator in dB. These values are 
extracted from the measurements in Figure 3.27.  

In this table, the highlighted entries depict the insertion loss for the forwards 

circulating path and range from 9.7dB to 12.4dB. Such large values are due to the Ce:YIG 

clad bus waveguides (3.5mm) which are much longer than the actual microring size and 

can be straightforwardly reduced. 

As formerly stated, the isolation ratio is defined as the ratio of forward to backward 

transmitted power between two adjacent ports. The largest isolation ratio is 11dB and 

it is measured between Port 1 and Port 2, and between Port 3 and Port 4 (i.e., IR12 and 

IR34). Vice versa, the smallest isolation ratio is 6.7dB that is measured between Port 1 

and Port 4 (i.e., IR14). Another important key feature to evaluate the performance of the 

device is the crosstalk at the output port (XT). It can be defined as the ratio between the 

sum of transmitted signal powers from all undesired ports and the transmitted signal 

power from the desired output port. From Table III, it is calculated as the difference 

between the entries in any horizontal row. The crosstalk in this device ranges from -

6.2dB at Port 4, to -11.3dB at Port 2.  The results are summarized below in Table 3.3.  

 ΔλMO=0.55  
(simulated) 

ΔλMO=0.35  
(simulated) 

ΔλMO=0.35  
(experiment) 

IR12=|S21|2/|S12|2 12.0  dB 11.6  dB 11.0 dB 
IR23=|S32|2/|S23|2 12.0  dB 8.5  dB 8.6 dB 
IR34=|S43|2/|S34|2 12.0  dB 11.6  dB 11.0 dB 
IR41=|S14|2/|S41|2 12.0  dB 8.5  dB 6.7 dB 
XT1=|S12|2/|S14|2  -14.3 dB -10.18 dB -10.2 dB 
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XT2=|S23|2/|S21|2  -10.0 dB -10.0 dB -11.3 dB 
XT3=|S34|2/|S32|2  -14.3 dB -10.18 dB -9.6 dB 
XT4=|S41|2/|S43|2  -10.0 dB -10.0 dB -6.2 dB 

Table 3.3: Optical isolation and crosstalk between the ports for the device measured in 
Figure 3.27.  

The measured IR are smaller than the simulated values because the device is 

operating below the saturation magnetization value (ΔλMO<0.55nm), as shown in the 

table. Both the isolation ratio and the crosstalk of the device can be improved by 

increasing the RWS and differentiating the CW and CCW resonance even further. 

Alternatively, a higher order ring filter can be used, such as a 2nd order coupled ring.  

The demonstrated 4-port circulator can be used as a building block for more complex 

nonreciprocal devices and networks. Here, we demonstrate how our device design can 

be expanded to realize circulators with an arbitrary number of input/output ports. We 

will only consider devices using the microring architecture; nevertheless, the principles 

shown here can be carried over to design multi-port MZI circulators as well. In this 

section, we present for the first time, to the best of our knowledge, a fully circulating, 

dynamically reconfigurable 6-port optical circulator with up to 14.4dB of isolation. 

The simplest design for a multi-port microring circulator involves a single central 

ring with multiple bus waveguides. While the simplicity in only using one ring is 

attractive, the optical crosstalk between the ports would likely be a critical issue due to 

the recirculation of the signal in the central ring. Moreover, the footprint will enlarge 

with increasing number of ports. An alternate design that we present here uses multiple 

rings laid out in the geometry depicted below. Figure 3.28 shows the schematic for a six 

port circulator using two identical rings and three bus waveguides. In general, this multi-

port architecture can be easily expanded to an arbitrary number of ports. If we use (N-
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1) rings with (N) bus waveguides, we are able to achieve a circulator with (2N) ports. 

Odd numbers of ports can be realized by using a loop mirror at the end of one of the bus 

waveguides, as was previously demonstrated with a 3-port circulator. 

 

Figure 3.28: Schematic of a six-port microring circulator 

As long the rings are separated far enough such that the magnetic field in one ring 

does not significantly affect the others, then we can magneto-optically tune the (N-1) 

rings independently and reconfigure the circulator in 2(N-1) ways. For a six-port 

circulator, it is possible to obtain the four different configurations shown above 

depending on the orientation of the magnetic field in the two rings. We fabricated this 

six-port optical circulator using two 20 micron radius ring resonators and three bus 

waveguides. In theory, the rings should be identical with the same resonance 

wavelength, but this is often not the case due to fabrication imperfections and non-

uniformities of the wafer or the etch process. Our result shows the intrinsic resonances 

of the two rings are over 1nm apart, meaning they must be thermally tuned together in 

order for the circulator to operate at a common wavelength for all of the ports. 
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Furthermore, we must apply enough current to observe a significant RWS in each of the 

rings for nonreciprocal behavior.  

In this design, the single microstrip can be used to meet both aforementioned 

requirements for single wavelength circulation and compensate the fabrication. Appling 

different current in each ring, we found that the optimal conditions for 6-port circulation 

in the device under test are I1=±185mA for the top ring and I2=±262mA for the bottom 

ring. Due to the angling of the output facets and limited spacing between adjacent facets, 

it was not possible to simultaneously test all input and output combinations. Instead, we 

use each of the six ports as an input successively and measure the transmission spectra 

through all the accessible output ports, as shown below in Figure 3.29.   
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Figure 3.29: Simulated (left) and experimental (right) transmission spectra of the six-port 
circulator operating near 1557.5nm.  

 

 Input Port 

O
u

tp
u

t 
P

o
rt

 

 1 2 3 4 5 6 

1 - -22.5 - - - -10.1 

2 -11.2 - -26.5 - -20.4 - 

3 - -12.1 - -15.5 - -29.3 

4 - - -11.3 - -23.5 - 

5 - -23.0 - -12.0 - -27.0 

6 -12.6 - -30.3 - -14.3 - 

Table 3.4: Measured S-matrix values for the six-port optical circulator in Figure 3.29 in dB. 
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Although the predicted RWS is 0.35nm, from the measured spectra we observe a 

RWS of 0.25nm for the top ring while the RWS of the bottom one is 0.35nm. This is 

reasonable considering the applied current was larger for the bottom ring in order to 

compensate the fabrication variation In this configuration, the operating wavelength 

near 1557.6nm is on resonance with the CCW modes of both rings, causing a circulation 

path of 1->2->3->4->5->6->1 From these measurements we can extract the scattering 

parameters of the device at the working wavelength. Once again, the highlighted entries 

show the insertion loss along the forward circulation path, and the isolation and 

crosstalk for each port can be extracted by analyzing the table. Here, we find the largest 

isolation ratio is 14.4dB between Ports 2 and Port 3, while the smallest isolation ratio is 

2.5dB between Ports 1 and Port 6. The insertion losses along the forward circulating 

path range from 10.1 to 14.3dB, which is similar to what was measured in the 4-port 

device, and can be reduced by shortening the length of the Ce:YIG cladding above the bus 

waveguides. Overall better device performance can be achieved by aligning the 

resonances with better fabrication accuracy or a separate thermal tuner. Alternatively, 

a coupled ring resonator system (with two or more rings) can be used to increase the 

extinction ratio.  

Coupled ring circulators 

A schematic of the coupled microring circulator is shown in Figure 3.30. Coupled ring 

resonators are often used to increase the extinction ratio, the pass band flatness, as well 

as the roll-off of the filter [33]. These characteristics are also applicable to the design of 

microring circulators. Since the light propagates in the two rings in opposite directions, 
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it is necessary to align the CW resonance of one with the CCW resonance of the other. To 

do this, individual electromagnets should be included on each ring, to allow for 

independent control of the local magnetic field as well as the temperature. A comparison 

of predicted isolation ratio and bandwidth between the single ring circulator and the 

coupled ring circulator is shown in Figure 3.30. The isolation of both the through ports 

(1->2) as well as the drop ports (1->4) are shown. Compared with the single ring, the 

coupled ring offers higher isolation ratios up to 18dB, while maintaining the same 

bandwidth characteristics.  

 

Figure 3.30: Schematic and simulated performance of a coupled ring circulator showing the 
improvement in isolation bandwidth and ratio compared with a single ring. 

This device was fabricated using the same procedures detailed for other devices in 

this chapter. Due to fabrication imperfections, the two rings must be thermally tuned 

together. The electromagnet was also placed higher above the waveguides (10 microns) 

than usual, due to some difficulties in the substrate thinning. This led to a less than 

optimal 0.25nm RWS, which decreased the achievable isolation ratio since the CW and 
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CCW spectra have significant overlap. Nevertheless, the demonstration showed that the 

extinction ratios in Figure 3.31 could be as high as 18dB, which far exceeds the 

performance of the single ring circulator. If the fabrication can be improved such that 

the RWS is as large as 0.4nm, then the benefits of using a coupled microring circulator 

would be realized.  

 

Figure 3.31: Simulated (left) and experimental (right) transmission spectra of the coupled 
ring circulator. 

Summary 

The microring resonator is a key device in present day and future photonic 

integrated circuits due to its small footprint, low power consumption, and ease of 

fabrication. When magneto-optic material is introduced into the resonator, the 

symmetry of the system is broken, and the resonant conditions for clockwise and 

counterclockwise propagating light are different. This can be used to create microring 

optical isolators and circulators. The electromagnet is key to this device, as it allows for 

a radial magnetic field to be generated along the entire microring, rather than a uniform 
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field placed along straight sections. This increase the interaction length of the MO effect, 

which resulted in a record resonant wavelength split of 0.35nm between the CW and 

CCW modes and isolation ratios up to 32dB. This can be further improved if less heating 

is generated by the electromagnet, as Faraday rotation decreases with temperature.  

On the other hand, the extreme wavelength sensitivity to fabrication and 

environmental conditions in the ring can be overcome by thermal tuning, which is easily 

achieved by the electromagnet. For larger photonic integrated circuits which may 

involve multiple microrings, this tunability is critical. All of the typical scalability 

arguments associated with microrings apply to isolators and circulators, meaning that 

multiple rings can be combined to create nonreciprocal photonic networks.  

Despite these attractive features, the microring isolator has low operating 

bandwidth. One way to increase the isolation bandwidth is to use higher order filters in 

the form of cascaded or coupled microresonators. However, despite these 

improvements, the isolation bandwidth remains on the order of 10GHz, which is not 

sufficient for most data transmission experiments. For these applications, a non-

resonant device such Mach-Zehnder interferometer is preferred for their large 

operating bandwidth. These devices are discussed in the next chapter. A summary of the 

demonstrated devices in this chapter and their relevant parameters is given below.  
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Single Microring Isolator  
(TM-mode) 

Value 

Ring Radius 35 microns 

Coupling Gap 270nm 

Resonance Wavelength Split 0.35nm @ 200mA 

Power Consumption 9.6mW @ 80mA 

Isolation Ratio 32dB 

20dB Isolation Bandwidth 2.5 GHz 

Insertion Loss Total 10dB,  
Extracted 2.3dB single device 

 

Cascaded Microring Isolator  
(TM-mode) 

Value 

Ring Radius 20 microns 

Coupling Gap 240nm 

Resonance Wavelength Split 0.31nm (x2) @ 200mA 

Power Consumption 62mW @ ~190mA 

Isolation Ratio 36dB 

20dB Isolation Bandwidth 10 GHz 

Insertion Loss Total 10dB 

 

4-port Microring Circulator  
(TM-mode) 

Value 

Ring Radius 20 microns 

Coupling Gap 220nm 

Resonance Wavelength Split 0.35nm @ 200mA 

Power Consumption 34.4mW @ 200mA 

Isolation Ratio 12.4dB 

20dB Isolation Bandwidth N/A 

Insertion Loss ~ 10dB 

 

6-port Microring Circulator  
(TM-mode) 

Value 

Ring Radius 20 microns 

Coupling Gap 220nm 

Resonance Wavelength Split 0.35nm @ 200mA 

Power Consumption 89.1mW @ 260mA 

Isolation Ratio 14.4dB 

20dB Isolation Bandwidth N/A 

Insertion Loss ~ 10dB 
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Chapter 4                                                            

Mach-Zehnder interferometer (MZI) based 

isolators and circulators 

The previous chapter covered resonant nonreciprocal devices using the microring 

architecture. The main concern with such devices is the limited bandwidth of operation. 

When considering wideband operation ranging from tens to hundreds of GHz, a non-

resonant interferometric device can be considered such as a Mach-Zehnder 

interferometer. Other devices such as directional couplers, multimode interferometers 

(MMI) can also be used, but the MZI structure is attractive due to its ability to operate in 

a push-pull regime. This is a common technique seen in optical modulators, and 

effectively halves the working length of the device. The free spectral range of a MZI can 

easily be adjusted by changing the path imbalance between the arms, which is used to 

tune the isolation bandwidth of the isolator.  

4.1 Mach-Zehnder Interferometers 

While the previous section covered resonant nonreciprocal devices, it is also possible 

to utilize the NRPS effects in a nonresonant interferometer. One widely used optical 
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device is the Mach-Zehnder interferometer, or MZI. The basic working principle of a MZI 

is to split a coherent light source into two beams, and then recombine them after each 

beam has propagated a certain distance. Interference will occur when the beams 

combine, which is sensitive to the relative phase ∆𝜑 between the two beams. In the case 

that the two arms are identical, the MZI is in a balanced configuration. As with the 

microring, the MZI is a widely used building block in integrated photonics, and the basic 

concepts are reviewed here.  A schematic of a 1x2 MZI is shown below in Figure 4.1. In 

its simplest configuration, it has an input port, an output port, and a pair of 1:2 splitters 

such as a Y-junction.  

 

 

Figure 4.1: Schematic of a MZI using a pair of 1x2 splitters 

If the two splitters are identical and 50:50, the field and power transfer function of 

the MZI can be expressed in Equations 4.1 and 4.2. Note that the propagation losses are 

ignored here, which is valid if waveguide losses are low and the two arms are close in 

length. 

𝐸𝑜𝑢𝑡
𝐸𝑖𝑛

=
1

2
(𝑒−𝑗(𝛽2𝐿2) + 𝑒−𝑗(𝛽1𝐿1)) 

(4.1) 

|𝐸𝑜𝑢𝑡|
2

|𝐸𝑖𝑛|2
= cos2 (

𝛽2𝐿2 − 𝛽1𝐿1
2

) = cos2 (
∆𝜑

2
) 

(4.2) 
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From these equations, it is apparent that transmission is near unity when the phase 

difference is an integer multiple of 2π, and zero for odd multiples of π. Spectrally, the 

transmission through the MZI will have fringes separated by an FSR given in Equation 

4.3 where∆𝐿 is the physical path difference |𝐿2 − 𝐿1|.  

𝐹𝑆𝑅 =
𝜆2

∆𝐿 ∙ 𝑛𝑔
 

(4.3) 

The same analysis can be extended to a 2x2 MZI depicted in Figure 4.2. This is a four-

port device just like the add-drop ring filter. The splitter in this MZI is most commonly a 

multimode interferometer (MMI), a directional coupler, or an adiabatic splitter. For now, 

the assumption is to use a directional coupler. The transmission matrix and transfer 

functions for the 2x2 MZI are given in Equations 4.4. The couplers are assumed to be 

lossless such that |κ𝑖
2| + |t𝑖

2| = 1. As with the 1x2 MZI, the propagation loss in the arms 

is ignored for now. 

 

Figure 4.2: Schematic of a MZI using a pair of 2x2 splitters. 

(
𝐸𝑜𝑢𝑡,2
𝐸𝑜𝑢𝑡,4

) = (
𝑡2
∗ 𝜅2

𝜅2
∗ 𝑡2

) ∙ (𝑒
−𝑗𝛽1𝐿1 0
0 𝑒−𝑗𝛽2𝐿2

) ∙ (
𝑡1 𝜅1

∗

𝜅1 𝑡1
∗) (

𝐸𝑖𝑛,1
𝐸𝑖𝑛,3

) 
(4.4) 

  

|𝐸𝑜𝑢𝑡,4|
2

|𝐸𝑖𝑛,1|
2 = 4(𝜅t)

2cos2 (
∆𝜑

2
) 

(4.5) 
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In practice, the couplers are often designed to be identical such that 𝜅 = 𝜅1 = 𝜅2. The 

light travelling from port 1 to 2 is known as the “bar” configuration, while going from 

port 1 to port 4 is known as the “cross” configuration. The power transfer functions for 

the  cross configuration is given in Equation 4.5, if no light is input from port 3. One thing 

to note is that the extinction ratio of the cross port remains high no matter what the 

coupling ratios are, if they are the same for the two couplers. This can be intuitively 

understood as the light going “across” a coupler and “through” a coupler each, causing 

the two paths to be symmetric with respect to the couplers. For the bar port, one of the 

paths goes “across” two couplers, while the other goes “through” two couplers, which 

can lead to intensity mismatch unless the coupling ratio is 50:50, leading to reduced 

extinction ratio. In the case that the couplers are 50:50, which is often the goal, the 

transfer functions of the cross and bar ports can be simplified even further to  cos2 (
∆𝜑

2
) 

and sin2 (
∆𝜑

2
) respectively. The extinction ratio is high for all port combinations in this 

case, which is ideal for the optical circulator. The FSR for the 2x2 MZI is the same as the 

one for the 1x2 MZI.  

4.2 MZI based isolator 

Design and Fabrication 

The concept of using a nonreciprocal optical interferometer as an optical isolator 

dates back to as early as 1975  [1]. Early works almost focused exclusively on etching 

waveguides on GGG substrates. A brief summary of the development of these early 

integrated optical isolators was covered in Chapter 2, as well found in references such 
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as  [2]. As semiconductor lasers became mainstream and PIC technology started 

developing, researchers such as Professor Mizumoto began exploring the use of wafer 

bonding to guide the light in a semiconductor waveguide and using the MO material as 

a cladding. These demonstrations included bonding to a GaInAsP/InP waveguide in 

2000  [3] as well as silicon in 2003  [4], although a full isolator on silicon was not 

achieved until 2008  [5]. Over the last decade, the results of MZI based optical isolators 

and circulators have continued to improve in terms of isolation ratio, optical bandwidth, 

insertion loss, and fabrication compatibility with other PIC elements. As with the 

microring devices in Chapter 3, the integrated electromagnet is central to the operation 

of MZI isolators in this chapter. While a MZI isolator with integrated electromagnet was 

demonstrated as early as 1990  [6], it was not utilized in conjunction with 

semiconductor waveguides until now.  

The schematic of the MZI isolator is shown in Figure 4.3, in which the splitter is either 

a 1x2 Y-splitter or a 2x2 directional coupler.  

 

Figure 4.3: Schematic of the MZI isolator with electromagnets. 

Here, L1and L2 are the lengths of the two electromagnets, above the two arms, which 

is the extent of the interaction length between the magnetic field and the waveguide. For 
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the devices considered here, the two electromagnets are identical such that L1 = L2 = 𝐿. 

The physical path difference ∆𝐿0 between the two arms is split into two sections on one 

of the arms, as shown in Figure 4.3. all other sections of the interferometer arms such as 

bends are identical. The phase constant of the waveguide when there is no magnetic field 

applied is 𝛽, while 𝛽1 and 𝛽2 represent the phase constants under the influence of a 

magnetic field in the top and bottom arms respectively. The optical path imbalance ∆𝜑 

between the two arms is then defined as Equation 4.7. 

∆𝜑 = 𝛽 ∙ ∆𝐿0 + 𝛽2𝐿2 − 𝛽1𝐿1 (4.7) 

As discussed in Chapter 3, the current induces a magneto-optic NRPS ∆𝜑𝑀𝑂 = ∆𝛽𝐿 

as well as a reciprocal phase shift due to Joule heating ∆𝜑𝑇𝐻. When the currents in the 

two arms are equal in magnitude but opposite in direction (analogous to push-pull 

operation), the phase constants of the two arms can be written as follows, where the 

plus or minus refer to the forward and backward directions respectively.  

𝛽1 = 𝛽 ∓
∆𝜑𝑀𝑂

2⁄ + ∆𝜑𝑇𝐻 (4.8) 

𝛽2 = 𝛽 ±
∆𝜑𝑀𝑂

2⁄ + ∆𝜑𝑇𝐻 (4.9) 

From these equations while the sign of ∆𝜑𝑀𝑂 changes with the current, the Joule 

heating is the same for the two arms under the assumptions that the currents |I1| = |I2| 

are of equal magnitude and ∆𝐿0 << 𝐿.  The operating principle of the MZI isolator is to 

ensure that the two arms of the unbalanced MZI interfere constructively in the forward 

direction ∆𝜑𝐹 = 2mπ, and destructively in the backwards direction ∆𝜑𝐵 = 2nπ + π for 

integers m and n.  

∆𝜑𝐹 = 𝛽 ∙ ∆𝐿0 + ∆𝜑𝑀𝑂 = 2mπ (4.10) 



 

 

107 

∆𝜑𝐵 = 𝛽 ∙ ∆𝐿0 − ∆𝜑𝑀𝑂 = 2nπ + π (4.11) 

For all devices considered in this work, m = n + 1 such that ∆𝜑𝐹 − ∆𝜑𝐵 = π. This 

provides the shortest MZI, which in turn reduces the footprint and insertion loss of the 

device. From this, ∆𝜑𝑀𝑂 must be equal to 𝜋 2⁄ , which sets a target length for the MZI arms 

and electromagnet. Since the waveguide cross-section (width = 600nm) is identical to 

that used for the microring isolator, the same simulations can be used. The RWS was 

experimentally determined to be 0.36nm at a driving current of 200mA and predicted 

to be as large as 0.55nm in absence of Joule heating, and 0.7nm if there is no bonding 

oxide. The RWS and ∆𝛽 can be related by Equation 4.12 and the required electromagnet 

length is reported in Table 4.1 for a wavelength of 1550nm. For the devices in this 

chapter, a conservative length L = 940 microns was selected. This allows some room for 

error in case the Faraday rotation or magnetic field is not as strong as the devices in 

Chapter 3. Furthermore, a smaller drive current can be used. However, if size (and 

insertion loss) is more of a concern, then smaller lengths could be chosen, assuming that 

the magnetic field is strong enough to saturate the Ce:YIG.  

∆𝛽 = ∆𝜆𝑀𝑂 ∙
2𝜋𝑛𝑔

𝜆2
 

(4.12) 

 

∆𝜆𝑀𝑂 (𝑟𝑖𝑛𝑔) ∆𝛽 L 
0.20 nm 1.674 rad/mm 0.938 mm 
0.35 nm 2.929 rad/mm 0.536 mm 
0.55 nm 4.603 rad/mm 0.341 mm 
0.70 nm 5.858 rad/mm 0.268 mm 

Table 4.1: MZI isolator length splits. 

While the reciprocal path difference ∆𝐿0 does not affect the NRPS, it does determine 

the FSR of the MZI from Equation 4.3. If the goal is to realize a broadband MZI, ∆𝐿0 should 
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be selected to be small so that the FSR is large, and the fringes are separated. On the 

other hand, fabrication inaccuracies make it extremely difficult to place the center of the 

MZI fringe at 1550nm, much like it is difficult to exactly hit a resonance wavelength in a 

microring. A tuning mechanism is needed, which can be achieved by slightly imbalancing 

the drive currents|I1| and |I2| to thermally tune the MZI fringes. This is expanded upon 

in the characterization section. 

The integer values of m and n are tabulated in Table 4.2. The FSR and isolation 

bandwidth at 20dB is also calculated based on the MZI model and parameters in this 

chapter. Both waveguide and material dispersion is taken into account, as well as the 

wavelength dependence of Faraday rotation, which is shown in Figure 4.4  [7]. 

 

Figure 4.4: Simulated wavelength dependence on effective index and Faraday rotation. 
Further details on the simulations are found in [7]. 
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M N ∆𝐿 FSR 20dB Isolation BW 

2 1 1.25μm 602.8 nm 37 nm 
6 5 4.09μm 183.5 nm 11.5 nm 

21 20 14.77μm 50.8 nm 3.2 nm 
201 200 142.9μm 5.2 nm 0.3 nm 

Table 4.2: MZI Isolator bandwidth splits. 

Finally, the design and selection of the splitters in the MZI is crucial to the extinction 

ratio, and isolation ratio of the device, much like the importance of critical coupling in 

the microring isolator. For all devices in this work, the splitters are placed under the 

Ce:YIG. The reason for this is to avoid any reflections in the arms when the light enters 

the bonded garnet areas. Having such reflections within the interferometer is extremely 

problematic, as it will introduce additional interference fringes based on Fabry-Perot 

resonances in the spectra. Such reflections outside the interferometer will still affect the 

performance of the device, but not as significantly as having them inside the MZI. 

Ultimately, it is best to reduce the reflections as much as possible especially when 

integrating isolators with lasers, which is discussed in Chapter 6. 

For the MZI isolator, both a 1x2 Y splitter, a 2x2 direction coupler, and a 2x2 MMI 

were considered. Beginning with the MMI, the simulated device performance was poor 

due the placement of the MMI under the Ce:YIG. There are many studies and papers on 

MMI design  [8], and one of the crucial design aspects is reducing the reflections from 

the MMI. A commonly used strategy is to taper the width of the waveguide leading up to 

the central imaging region, but this leads to mode conversion from TM0 to TE1 when the 

waveguide cross-section is asymmetric in the vertical dimension. In fact, this mode 

conversion is a crucial aspect of the polarization rotator devices discussed in Chapter 5. 

Nevertheless, it is undesirable in an MMI as shown in Figure 4.5. The fundamental TE 
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mode, as simulated by the eigenmode expansion method in Lumerical MODE, has certain 

MMI lengths at which it produces a 50:50 splitting ratio. However, the MMI behavior as 

a function of length is much more chaotic for an input TM mode. In fact, the partial 

transition from TM0 to TE1 is visible in the taper leading up to the MMI. It may be 

possible to produce a functional MMI component for TM modes if the taper is eliminated, 

but due to other difficulties mentioned above, MMIs were not considered in the MZI 

isolator.  

 

 

Figure 4.5: FDTD and EME simulations of the MMI with bonded Ce:YIG on top for TE and 
TM polarizations. A length of 42 microns is selected for the TE polarization, giving a 50:50 split, 

but no appropriate lengths are available for TM modes.  

Directional couplers are extremely well studied devices, and their pros and cons are 

well known. They are used because of their simplicity and compactness. Furthermore, 

the backreflection from a directional coupler is generally considered to be negligible. 
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However, since they operate based on modal beating, there is an inherent wavelength 

dependence for the splitting ratio. Furthermore, directional couplers are extremely 

sensitive to fabrication variations, such as the coupling gap, which directly affects the 

beat length of the coupler. Simulations in Figure 4.6 of a directional coupler with 200nm 

and 300nm gap. The beat length is much shorter in the 200nm gap coupler, which is 

understandable given the stronger coupling coefficient.  

 

Figure 4.6: EME simulations of a directional coupler with Ce:YIG bonded on top for TM 
polarization for different wavelengths and coupling gaps. The cross (left) and bar (right) 

transfer functions are shown.  

Y-splitters operate adiabatically, which should guarantee a wavelength independent 

50:50 splitting ratio. However, this is often not the case, as fabrication imperfections can 

cause the splitting ratio to be uneven. Another common issue with Y-splitters is the 
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reflection that occurs at the splitting region, as well as the sensitivity to the branching 

angle. Therefore, a modified Y-junction is simulated based on the previous results in  [9] 

and shown in Figure 4.7. A comparison of these couplers is shown in Figure 4.8, in which 

the standard Y-junction has the worst extinction ratio, as well as noticeable ripples in 

the spectra, caused by reflections. The directional coupler has the best performance 

among the three.  

 

Figure 4.7: FDTD simulations for a tapered gap Y-junction with bonded Ce:YIG on top for 
TM polarization. 

 

Figure 4.8: Experimental comparison of a Y-junction, a tapered Y-junction, and a directional 
coupler in terms of extinction ratio in a MZI with bonded Ce:YIG.  
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Another type of splitter, known as an adiabatic 3dB coupler, is further discussed in 

Section 4.3. The device was fabricated using the same process flow as the one in Chapter 

3 for the microring isolators, with some minor changes. First of all, the length of the 

Ce:YIG die bonded to the chip was reduced from 3.5mm to 1.5mm, in an effort to reduce 

insertion loss. Second of all, the SGGG thickness was left at 10 microns as opposed to 5, 

due to some difficulties in levelling the polisher at the time of the fabrication. This results 

in weaker magnetic fields, as was discussed in Section 2.5, which means a stronger 

current is required to saturate the magnetization in the Ce:YIG. The final device 

schematic and microscope image are shown in Figure 4.9.  

 

Figure 4.9: Schematic and micrograph of MZI isolator.  

Device Characterization 

Characterization was performed using the same procedures detailed in Chapter 3. 

For testing the device as an isolator, the light is injected from Port 1, and measured out 

of Port 4. Figure 4.10 depicts the spectrum from a narrowband device with m=201 and 

n=200. The devices are characterized using a tunable laser (1460nm to 1580nm), 

coupled into the TM mode of the device, and a power meter used to record the power. 
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The excess loss of the device caused by the Ce:YIG is ~8dB, as normalized to a reference 

silicon waveguide with the same length. The origin of this loss primarily comes from 

propagation loss through the Ce:YIG clad silicon waveguide (~5dB) as well as the 

transition of the waveguide into the bonded area (~1dB each). From comparison to a 

Ce:YIG clad waveguide without the MZI, we see that the directional couplers and extra 

path length in the bottom arm accounts for another ~1dB of loss. Shrinking the length 

of the interferometer (L) further could reduce the loss even further. 

 

Figure 4.10: Experimental transmission spectra through the MZI isolator for different 
applied currents in the electromagnet.  

The MZI fringes are very uniform with extinction ratio over 20dB. When no current 

is applied to either arm, the forward and backward spectra are aligned. As we increase 

the equal but opposite currents I1 and I2 in the electromagnets, we observe a 

wavelength split between the minima of the forward and backward spectra. When |I1|= 

|I2| = 180mA, the minima of the backward spectra align with the maxima of the forward 
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spectra, which results in the maximum optical isolation.  Given the 4 Ohm resistance of 

each microstrip, this corresponds to 130mW of power dissipated due to Joule heating 

per microstrip. The fringe separation as a function of current can be used to extract the 

phase difference between forward and backward propagation in the two arms (2 ∙

∆𝜑𝑀𝑂). This is plotted in Figure 4.11 as a function of the drive current. For a phase 

difference of π for optimal optical isolation, which is obtained near 180mA. When the 

current is larger than 280mA, we see a roll off and saturation of the magneto-optic effect. 

This is because of a decrease in Faraday rotation due to Joule heating, as was also 

observed in our previous microring isolator devices. The Faraday rotation is also slightly 

weaker at longer wavelengths (1580nm vs 1460nm) as expected. This device showed a 

sublinear dependence between the NRPS and applied current, the reason for which may 

be tied to the sublinear magnetization of the Ce:YIG when it is not saturated.  

 

Figure 4.11: Extracted optical path difference between forward and backwards 
propagation in the MZI based on the data in Figure 4.10.  

Improvements on substrate removal to thin the SGGG even further will decrease the 

current required since magnetic field strength is inversely proportional with substrate 

thickness. Furthermore, while the first-generation device only used a single coil 

electromagnet, while multicoil designs discussed in Chapter 2.5 can help reduce the 
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current requirement. A subsequent run with L = 1mm showed significantly improved 

performance in terms of power requirements. The results are shown in Figure 4.12 for 

several different SGGG thicknesses and electromagnet designs. For the best 3-coil design, 

the optimum isolation criteria of the phase difference between forward and backward 

arms 2 ∙ ∆𝜑𝑀𝑂 = 180 degrees is achieved with only 13mA of current, resulting in only 

3.6mW of dissipated power for a 20 Ohm resistance.  

 

Figure 4.12: Comparison of MZI isolator with various electromagnet geometries based on 
data in this chapter, as well as subsequent fabrication runs, detailed in Chapter 5.  

To achieve broadband isolation, ∆𝐿0 is reduced to 1.25 microns (m=2, n=1). Due to 

the large FSR, only a single fringe is visible.  Phase errors between the two arms blueshift 

the minimum of the spectra near 1450nm instead of the designed 1550nm, which is 

outside the range of the tunable laser. It is possible redshift the spectrum by slightly 

unbalancing the currents I1 and I2, since the electromagnets can be controlled 

independently. However, doing so will also cause some thermal unbalance between the 

arms, and ∆𝜑𝑇𝐻can no longer be ignored. Thus, the maxima of the forward spectrum are 

not exactly aligned with the minima of the backward spectrum. Nevertheless, as long the 

unbalance is not too large, optical isolation can still be observed.  
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The best working conditions are shown in Figure 4.13, where both the simulated and 

measured spectra are shown. We observe a maximum of 29dB of isolation at 1523nm, 

with an excess loss of ~9dB compared to our reference silicon waveguide. This is slightly 

higher than the narrowband device and may be a result of the imperfect phase 

conditions due to the unbalanced current. There are some ripples in the spectra, which 

are caused by reflections at the bonding interface. When we sweep the current I2 

through the bottom, a longer arm from 200 to 240 mA, as shown in Figure 4.14, the 

central wavelength for isolation continuously shifts to longer wavelengths. If we instead 

increase the current through the top shorter arm, the central wavelength will blueshift. 

Since the FSR of this MZI is so large, small changes in phase result in large shifts in 

spectra. As a result, the central isolation wavelength can easily be tuned over 100nm 

(limited by tuning range of the laser).  

 

Figure 4.13: Experimental spectra of the broadband MZI isolator. Only a single fringe is 
visible within the tuning range of the laser.  
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Figure 4.14: Wavelength tuning of the broadband MZI isolator by unbalancing one of the 
arms slightly (+/-  20mA).  

Care must be taken to provide a smooth transition into the Ce:YIG clad areas to avoid 

these spurious reflections. One option may be to use a silicon nitride cladding (n=2.0) 

instead of silica cladding for waveguides outside the bonded region to better match the 

Ce:YIG (n=2.20) and SGGG (n=1.97). Another option would be to use a mode with less 

overlap with the top surface, such as the TE0 or TE1 mode, and then convert into TM0 

mode before the phase shifters. This approach is used in Chapter 5.  

Finally, the isolation bandwidth of the isolator at different operating wavelengths is 

calculated according to Equation 3.21. The results are shown in Figure 4.15. We find that 

20dB of isolation ratio is guaranteed over 14nm for the worst case (1547.87nm), and 

18nm for the best case (1523.95nm). While we were unable to measure isolation 

bandwidth for spectra with minima near the limits of the tuning range of the laser, we 

expect similar performance across the whole 100nm. 
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Figure 4.15: Extracted isolation bandwidth for the broadband MZI isolator. 

4.3 MZI based Circulator 

Since a 2x2 splitter was used, the device covered in Chapter 4.2 can be used as a 

circulator as well. For the device to function as a circulator, it must show high extinction 

ratios for both the bar and the cross configuration. However, this is generally not the 

case unless the directional coupler is exactly 50:50. As discussed previously, the cross-

port has high extinction ratio as long as the two couplers are identical. This is not the 

case for the bar-port, and a comparison is shown in Figure 4.16. While the cross-port 

shows 15 to 20dB of extinction throughout the whole 120nm wavelength range, the bar 

(thru) port has much less extinction ratio, ranging from 5 to 15dB. There is also 

significant wavelength dependence on the extinction ratio for the bar-port, due to the 

wavelength dependence of the directional coupler. Directional couplers are not suitable 

to achieve broadband optical circulation, since the extinction ratio is inherently tied to 

the splitting ratio, which is wavelength dependent. Simulations in Figure 4.17 show that 

for 20dB of extinction (isolation), the coupling ratio must be within 5% of 50:50. This 
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puts extreme requirements on the design and fabrication of the coupler to be exact. To 

realize a broadband optical circulator, the splitters must be designed such that they are 

50:50 over a large wavelength range. This can be done using an adiabatic 50:50 coupler 

design, which is further explored in Chapter 5. 

 

 

Figure 4.16: Experimental spectra of the cross and bar ports of a MZI circulator. 

 

Figure 4.17: Dependence on the extinction ratio versus power coupling. 
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Summary 

MZI isolators were demonstrated with high performance, up to 29dB of isolation. 

The wideband MZI design results in broad optical isolation of more than 20dB over a 

record 14nm. This is achieved by using the electromagnets to fine tune the magnetic 

fields over the two arms to center the MZI fringe in the wavelength range of interest. 

This can be done to tune the operating wavelength over a measured 100nm. Push-pull 

operation of the electromagnets on the two arms is utilized in combination with multi-

coil electromagnet geometries to decrease the power consumption from an initial 

260mW to 3.6mW. While the same design can be used to realize a MZI optical circulator, 

the coupling ratio must be guaranteed to be 50:50 over large wavelengths to achieve a 

broadband device. For this, directional couplers are not optimal, and other splitters 

should be considered.  
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Narrowband MZI-Isolator 
(TM-mode) 

Value 

Common Arm Length 940 microns 

Arm Imbalance 142.9 microns 

Designed FSR 5.2nm 

Power Consumption 260mW @ 180mA 

Isolation Ratio 20dB 

20dB Isolation Bandwidth 0.3nm 

Insertion Loss 8dB 

 

Broadband MZI-Isolator 
(TM-mode) 

Value 

Common Arm Length 940 microns 

Arm Imbalance 1.25 microns 

Designed FSR 602.8nm 

Power Consumption 260mW @ 180mA 

Isolation Ratio 29dB 

20dB Isolation Bandwidth 18nm 

Insertion Loss 9dB 
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Chapter 5                                                            

Optical isolation for TE polarization 

All the devices described so far have operated for the TM polarization of light. 

This is due to the nonreciprocal phase shift being optimized for TM modes, when 

considering the heterogeneous approach of adding MO material to silicon. However, 

semiconductor lasers typically emit in TE polarization, which limits the compatibility of 

the isolator with the laser. In this chapter, we explore the possibility to achieve NRPS for 

TE polarizations. We also look at the use of a polarization rotator, which can be placed 

in between the laser and the isolator (circulator). Results for both approaches are 

shown, and the first optical circulator on silicon for TE polarization is realized [1].  

5.1 Nonreciprocal phase shift for TE polarization 

In Chapter 2, the origin of the NRPS effect in magneto-optic waveguides was 

discussed, and the polarization dependence of NRPS was introduced. The wafer bonding 

approach used for the devices in Chapters 3 and 4 is not suitable to achieve NRPS for TE 

mode. Another approach must be taken to realize optical isolators and circulators 

intrinsically operating for TE polarized light using NRPS effects. One early work uses a 

garnet rib waveguide on GGG substrate in which a domain wall or compensation wall is 
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introduced in the center of the waveguide [2]. This can produce a waveguide in which 

the halves are magnetized with opposite signs. Thus, the symmetry of the waveguide in 

the x-direction is broken, and can be used to achieve NRPS [3,4]. More recently, 

researchers have proposed [5,6] and experimentally demonstrated NRPS for TE mode 

by depositing another material such as amorphous silicon side by side with a garnet 

waveguide [7]. Both approaches are depicted in Figure 5.1. The downside to all these 

approaches is compatibility with other photonic devices, since they all make use of 

lattice matched GGG substrates. Silicon substrates and waveguides should be used to 

integrate the isolators and circulators further and increase their applications. 

 

Figure 5.1: Schematic for waveguide designs to achieve NRPS for TE modes 

If silicon substrates are to be used, a monolithic approach must be pursued to deposit 

garnet on the silicon. Significant efforts have been made in exploring such a monolithic 

approach towards integrating magneto-optic material onto silicon and silicon nitride 

waveguides by several research groups across the world including MIT [8–13] and the 

University of Minnesota [14–17]. We explored such approach through collaborations 

with these groups, in an effort to realize a monolithic optical isolator operating for TE 

modes. 
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The basic design was shown in Chapter 2 and consists of a silicon waveguide with a 

magneto-optic cladding on the side. The waveguide must be asymmetric, so the MO 

material must only coat one side of the waveguide. One way to do this is to fully clad the 

waveguide, etch a trench in the cladding on the side of the waveguide, and deposit the 

MO material everywhere. This procedure is depicted below in Figure 5.2, and the 

simulations are shown in Figure 5.3 for a silicon height of 220nm. Since the refractive 

index silicon exceeds that of Ce:YIG, the mode remains confined in the silicon core, even 

when the width of the Ce:YIG is much larger. However, the silicon should not be too 

skinny, as it complicates the fabrication and lithography. A silicon width of 350nm or 

450nm was chosen, and up to 0.35nm of RWS is expected, assuming a Faraday rotation 

of -4500 deg/cm. If the Faraday rotation is weaker, as is often the case with the deposited 

garnets, then this RWS will decrease accordingly. MZI structures were also designed 

with various splits on the length of the MO section. This can be a clearer indication of 

whether any nonreciprocal phase shift was achieved.  

 

Figure 5.2: Process flow for preparing MO isolators for TE polarization 
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Figure 5.3: Simulation of the RWS for different silicon and Ce:YIG widths. 

Both microring and MZI based devices were fabricated following these simulation 

parameters, and SEM images are shown in Figure 5.4 both prior and after garnet 

deposition and RTA. In this particular example, a Bi:YIG thin film was deposited by 

collaborators at MIT using a YIG seed layer to promote crystallization. The method of 

deposition was pulsed laser deposition. There is clearly some incident angle during the 

deposition, as the sidewall coverage on one side is much greater than the other. A rapid 

thermal anneal was performed (generally > 800C) to crystallize the garnet into the 

correct phases.   
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Figure 5.4: SEM images of the waveguides with the trench adjacent to the waveguide, and 
the cross-section after garnet deposition.  

 

Figure 5.5: SEM images of the occasional misalignment in the trench.  

Several complications arose during the fabrication of these devices. The alignment 

of the oxide trench and the waveguide becomes crucial, as misalignment as shown in 

Figure 5.5 can cause an oxide layer to form between the silicon and the Ce:YIG. It was 

already established in Chapter 3 that the presence of this oxide layer greatly reduces the 

NRPS. The other concern is that the trench etch does not stop at the bottom of the 
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waveguide but goes into the buried oxide. This causes an offset in the heights of the 

silicon and Ce:YIG waveguide sections. To get around this, it is possible to overetch the 

trench, and then rely on sidewall coating of the garnet onto the waveguide.  

However, this also has its drawbacks. First of all, the sidewall coverage is much 

poorer than a blanket deposition, and the garnet thicknesses on the sidewall are only 

half of what is on top of the wafer, or even less. Growths of films exceeding 400nm 

resulted in cracking due to thermal expansion mismatch during the rapid thermal 

anneal. Thus, it is not possible to achieve a thick sidewall coating using conventional 

deposition methods without rotation of the sample. Second of all, Since the sidewall 

coating is affected by the angle, it causes a non-uniform waveguide cross-section in the 

ring resonator. This can be compensated by designing a racetrack resonator of using a 

MZI instead. Finally, it is unclear what the quality of the garnet is when it is on a sidewall.  

Despite these issues, the SEM images of the cross-section show that the MO material 

is side by side with the silicon waveguide. The samples were diced and polished for 

testing.  

 

 

Figure 5.6: Schematic and images of the test setup for generating strong out-of-plane 
magnetic fields.  
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The devices were initially sandwiched between a toroidal electromagnet capable of 

generating >0.1T of magnetic field. Later on, the setup was changed such that the sample 

sits directly on a neodymium magnet with a measured field strength of 0.5T at the 

surface. In both cases, the magnetic field is generated out-of-plane with respect to the 

chip. An optical switch is used to change the propagation direction of light, and the 

spectra is recorded in both forward and backward directions.  

Ultimately, no discernable NRPS was found in the samples. This holds true over 

multiple device designs, fabrication runs, and deposition techniques. Different garnets 

were experimented such as Ce:YIG, Bi:YIG, Ce:TIG, and Bi:TIG with varying thicknesses, 

deposition parameters, and anneal temperatures. Neither microring or MZI devices 

showed any appreciable nonreciprocity for magnetic fields up to 5000Oe, which is well 

above the saturation point of the garnets. Two example spectra are shown below in 

Figure 5.7 for a ring resonator and MZI respectively. There is no change between the 

spectra in the forward and backward direction.  

 

Figure 5.7: Comparison of the forward and backward spectra in the ring and MZI devices, 
showing no signs of nonreciprocity. Multiple sweeps showed the forward and backwards 

spectra to overlay exactly on top of each other.  
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Further analysis of devices showed that waveguides with smaller silicon cross-

sections and larger overlap with the MO regions had higher loss, indicating significant 

penetration of the optical field into the MO material. The spectra were also clean, 

indicating only a single TE mode circulating in the ring or propagating through the 

interferometer. The resolution of the measurement is 0.1pm, which should be able to 

detect NRPS, even if it is much weaker than designed. Thus, the most likely conclusion is 

that the material itself is not magnetized. While measurements done on planar, uniform 

films deposited at the same time as the devices showed significant Faraday rotation, 

there is no actual NRPS in the devices that were measured at UCSB.  

Other collaborators had more success using a similar approach. NRPS for TE 

polarization was observed in both silicon and silicon nitride based waveguides with 

Ce:YIG cladding on the side [18]. Up to 30dB of optical isolation for the TE polarization 

was measured. The question of material quality still remains however. The measured 

NRPS was only 0.36 radians per millimeter at room temperature, which is far less than 

the 6 radians per millimeter for TM polarization demonstrated in Chapter 3. There is 

significant room for improvement, but it does validate this approach, and could be 

promising in the future. 

5.2 TE to TM polarization rotators 

In the absence of a strong NRPS effect for TE mode, it is instead possible to achieve 

isolation for TE mode of light using a TE to TM polarization rotator. Such a rotator could 

be placed in between the laser and the TM mode isolator provided that the rotator has 

low loss, high polarization extinction ratio (PER), and low reflection. This effectively 
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changes to operating polarization of the isolator to TE mode, with the caveat that the 

PER is comparable to the isolation. Polarization rotators for silicon photonics have been 

widely studied and can be designed using a variety of methodologies. An excellent 

review of such technologies is presented in [19] and a detailed assessment of these 

techniques is beyond the scope of this work.  

One type of polarization rotator known as the polarization splitter rotator (PSR) is 

attractive due to its fabrication simplicity and tolerance to fabrication errors [20]. The 

PSR can be separated into two components. The first section is a hybridization section, 

which can provide the conversion between TM and higher order TE modes through a 

process called mode hybridization. This effect can be readily observed in waveguides 

with high index contrast and asymmetrical cross-sections. For these waveguides, the 

amount of the dominant (i.e. Ex for TE modes) and nondominant (i.e. Ey for TE modes) 

field components can be comparable. The ratio between the polarizations can be written 

as the following equation [21].  

𝛾𝑥 =
∫|𝐸𝑥

2|𝑑𝑥𝑑𝑦

∫|𝐸𝑥
2|𝑑𝑥𝑑𝑦+∫|𝐸𝑦

2|𝑑𝑥𝑑𝑦
     (5.1) 

This modal hybridization is maximized when 𝛾𝑥 = 50%, at which there is a crossover 

between the dominant polarization of the mode. To achieve significant modal 

hybridization, asymmetry is required in the waveguide geometry. It is possible to 

introduce asymmetry in the lateral direction by using L-shaped waveguides [22] or 

intentionally creating a slant in one of the sidewalls [23], but these typically involve 

additional processing steps. Instead, the easiest way to introduce asymmetry is in the 

vertical direction, by using a different material for the top and bottom cladding of the 
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waveguide. Since the bottom cladding for silicon waveguides is generally silicon dioxide, 

the top cladding should be a material such as air, silicon nitride, or Ce:YIG in this case, as 

the garnet is already bonded in order to make an isolator.  

For such waveguides with vertical asymmetry, 𝛾𝑥 is sensitive to the width of the 

waveguide, which can be lithographically controlled. In Figure 5.8, a silicon waveguide 

with bonded Ce:YIG top cladding is shown, and the calculated effective indices of the 

waveguide eigenmodes are plotted. The waveguide cross-section is identical to the one 

used in the isolators and circulators, which alleviates some fabrication complexity. The 

plots are repeated for silicon heights of 220nm, 250nm, and 270nm at a wavelength of 

1550nm.  

 

Figure 5.8: Schematic and simulations of the mode hybridization between TM0 and TE1 
modes at various waveguide heights from 400nm to 1100nm and widths from 220nm to 

270nm. 
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For each of these plots, there clearly exists a waveguide width at which the TE0 and 

TE1 modes become hybridized. The exact width at which this crossover occurs changes 

with the waveguide height, and the strength of the hybridization is also apparent from 

the “splitting” of the curves near this point. A larger split between the TE0 and TE1 

curves, as is the case for h = 220nm, is indicative of stronger hybridization. When the 

waveguide structure is fully symmetric, the curves do not split, and instead cross each 

other. Hybridization between even higher order modes exist but are not shown here. 

The fundamental TE0 mode is not hybridized at all, as it is far away from any mode 

crossings for the widths of interest. To fully take advantage of mode hybridization for 

polarization conversion, a taper can be utilized to adiabatically transition between the 

TE1 and TM0 modes. Such a taper should be centered around the widths circled in Figure 

5.8. For the case of h = 220nm, the taper should be centered at a waveguide width of 

840nm, at which point the mode crossing occurs. This is further verified by plotting the 

polarization ratio 𝛾𝑥 of the two selected eigenmodes as a function of the width, as shown 

in Figure 5.9, in which we see 𝛾𝑥 = 50% at w = 840nm. As with any adiabatic mode 

transition, the input mode with the lower (higher) effective index will transition into the 

mode with the lower (higher) effective index after the taper, completing the TM0 to TE1 

transition.  
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Figure 5.9: Polarization ratio of the TE and TM-like modes near the crossover point at 
840nm. 

As previously discussed in Chapter 4.3, the length criteria for adiabaticity can be 

challenging to directly calculate, and more practical to simulate. The tapering of the 

width should be slowest around the crossover point, so it is advantageous to use a three-

section taper, in which the middle section is centered at w = 840nm and tapered the 

slowest. This helps keep the overall length of the taper relatively short to avoid excessive 

losses. The final taper design is shown below in Figure 5.10 and the waveguide 

dimensions are tabulated in Table 5. The central part is a linear taper from 790nm to 

890nm. The electric field intensity of the eigenmode is also pictured above the 

beginning, middle, and end of the taper. The transition between TE1 mode to TM0 is 

clear, and the hybrid TE/TM mode is also depicted at the width of 840nm.  
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Figure 5.10: Schematic and field profiles along various points in the taper from TE1 to TM0 
polarization. 

 

  

Symbol Description  Size 
W1 Taper Start 890 nm 
W2 Taper End 790 nm 
L1 First segment length 20 m 
L2 Central taper length 80 m 
L3 Last segment length 20 m 

Table 5.1: Dimensions of the final mode hybridization taper design. 

Based on EME simulations in Lumerical MODE, 50 microns is enough for complete 

power transfer (~99%) between the TM0 and TE1 modes, as shown in Figure 5.11. The 

final choice of the 80 microns long taper length may be overly cautious but used in 

anticipation of fabrication inaccuracies.   
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Figure 5.11: Simulation of power transfer between TM0 and TE1 modes as a function of 
central taper length.  

The second component of the PSR is a mode converter that couples the TE0 and TE1 

modes together. This is a common component in mode-multiplexed systems [24] and 

can be achieved using asymmetric directional couplers [20], multimode interferometers 

(MMIs) [25], or an adiabatically tapered coupler [26]. There are tradeoffs between size, 

insertion loss, and operating bandwidth when considering these structures. Ultimately, 

an adiabatic tapered coupler was selected, which has been shown to have better 

fabrication tolerance and broadband optical behavior [27]. 

The coupler consists of two waveguides with different widths that are gradually 

tapered together, but in opposite directions. The concept of the adiabatic TE0 to TE1 

tapered coupler is like the adiabatic 50:50 tapered coupler in Section 4.3. Only one 

supermode of the two-waveguide system is excited at the input due to the mismatch in 

effective indices between the two waveguide modes. As the two waveguides are tapered 

together, there exists a point where the index between the TE0 mode of the narrow 
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waveguide is matched to the TE1 mode of the wide waveguide. Following this point in 

the taper, the supermode completely transfers its energy from the narrow to the wide 

waveguide. There is no beating of energy between the two waveguides like a directional 

coupler, since only a single supermode exists at any given point. The waveguides here 

have SiO2 top cladding instead of Ce:YIG, as it is disadvantageous to have any TE/TM 

mode hybridization. The effective indices of TE0 and TE1 modes in a 220nm tall silicon 

waveguide on BOX is plotted for different widths in Figure 5.12. The shaded region from 

n = 2.1 to n = 2.3 is where the index matching is selected to occur. No other modes, TE 

or TM, are present near these index values for the widths considered. This is important 

to reduce any crosstalk between modes due to fabrication imperfections (roughness, 

width deviations, etc).  

 

Figure 5.12: Simulation of the TE0 and TE1 modes for various waveguide widths for a 
silicon waveguide height of 220nm. 
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Figure 5.13: Schematic of the TE0 to TE1 tapered coupler.  

 

Figure 5.14: FDTD simulation of the TE0 to TE1 tapered coupler.  

Symbol Description  Size 
W1 TE0 waveguide width start 440 nm 
W2 TE0 waveguide width end 360 nm 
W3 TE1 waveguide width start 800 nm 
W4 TE1 waveguide width end 880 nm 
L1 Tapered coupler length 100 m 

Gap Gap between waveguides 300 nm 

Table 5.2: Final design parameters for the TE0 to TE1 tapered coupler. 

The final design of the PSR is shown in Figure 5.15. It consists of an adiabatically 

tapered coupler (100 m long) for TE0 to TE1 mode conversion, followed by a linear 

taper (120 m long) to convert from TE1 to TM0. S-bends and other tapers to transition 
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between the regions are not shown, but very important to simulate and verify. The S-

bend into each adiabatic section is extremely important, as it should be gradual enough 

to only excite a single supermode of the system. EME and FDTD are both equally valuable 

tools for design and verification for such a complex structure.  

 

Figure 5.15: Final design of the polarization converter.  

The advantage of this polarization rotator over previous TM mode isolator plus 

TE/TM rotator devices is improved fabrication tolerance [28] as it does not require 

electron-beam lithography, and fabrication simplicity [29] since it does not require any 

additional processing steps such as a polysilicon or silicon nitride overlay on the 

waveguide. The use of Ce:YIG to assist with polarization rotation is unconventional, but 

suitable given the constraints of the situation.  

The polarization rotator is characterized by using a setup similar to the one in 

Chapter 3. Polarized light (TE or TM) is launched and collected using PM lensed fiber. A 
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polarization beam splitter is then placed at the output, and the PER can be measured by 

comparing the powers in the two polarizations. The test structures consisted of a 

polarization rotator connected with a roughly 2mm long straight waveguide segment. 

The results are plotted in Figure 5.16. Comparison is made with silicon only waveguides, 

as well as a Ce:YIG/Si waveguide with no polarization rotator. The extracted parameters 

are shown in Table 5.3. 

 

Figure 5.16: Measurements of a waveguide with and without the polarization rotator. 

 

Symbol Description  Size 
W1 Taper Start 890 nm 
W2 Taper End 790 nm 
L1 First segment length 20 m 
L2 Central taper length 80 m 
L3 Last segment length 20 m 

Table 5.3:  
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5.3 Microring optical isolator for TE mode 

Using the polarization rotator discussed in the previous section, it is possible 

combine the device with the TM mode microring isolator to achieve optical isolation for 

TE polarized light. This is the first microring based isolator operating for TE mode. A 

schematic and microscope image of the isolator is shown in Figure 5, in which a 3-coil 

Archimedean spiral is used for the electromagnet. For this device, only a single TE to TM 

polarization rotator was included, and the output light polarization is TM. If the device 

is to be included in a PIC, it may be necessary to include a second TM to TE polarization 

rotator at the output of the isolator to return to the conventional TE mode.   

 

Figure 5.17: Schematic and image of the TE mode microring isolator. 

The transmission spectrum is measured with a tunable laser sweep and shown in 

Fig. 5b. The isolation ratio is measured by injecting TE polarized light into the device 

while sweeping the current applied to the electromagnet. A split in the resonant 

wavelength between forward and backward propagation is observed for 40 mA of 

current, which results in a maximum of 25 dB optical isolation as shown in Figure 5. 
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Figure 5.18: Experimental measurements of the forward and backward transmission 
through the TE mode microring isolator. 

The performance of the polarization rotator is characterized by comparing the 

spectrum through the ring isolator plus rotator (TE input) with the spectrum through a 

reference Si/Ce:YIG waveguide (TM input) of the same geometry. The polarization 

rotator introduces 0.8 dB of insertion loss at 1550 nm, and <2 dB of loss across the whole 

wavelength range of 1520 nm to 1580 nm. The PER of the rotator is measured by adding 

a polarizer at the output of the isolator and measuring the residual TE light in the 

waveguide. The PER near 1550 nm is 25 dB, and ranges from 20 dB to 30 dB across the 

whole wavelength range. The broadband characteristics of the polarization rotator is 

attributed to the adiabatic design. The total insertion loss of the isolator is 6.5 dB 

compared to a Si only waveguide (TE input) at 1550 nm. The primary contributions to 

the loss is caused by the Ce:YIG upper cladding as well as the transition into the bonded 

Ce:YIG region. This can be further reduced by shortening the length of the Si/Ce:YIG bus 

waveguide, which is 2 mm long in this case. The isolation ratio is measured by injecting 

TE polarized light into the device while sweeping the current applied to the 

electromagnet. Flipping the orientation of the current is identical to changing the 
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propagation direction of light. A split in the resonant wavelength between forward and 

backward propagation is observed for 40 mA of current, which results in a maximum of 

25 dB optical isolation as shown in Fig. 5c. 

One of the improvements in this device compared with the microring isolators 

presented in Chapter 3 is the addition of the multi-coil electromagnet. This improves the 

thermal tuning efficiency in the device, as shown in Figure 5. The blue line depicts the 

MO nonreciprocal wavelength split, while the red line is the shift in resonance 

wavelength due to Joule heating. The MO effect saturates as the magnetization is 

saturated, and then slightly decreases at higher currents due to heating. Both 

mechanisms affect the isolation wavelength, which is plotted as a function of applied 

current (clockwise and counterclockwise injection) in Fig. 6c. The isolation wavelength 

can be tuned across a full free spectral range (FSR) of the ring, meaning the isolator is 

widely tunable. 

 

Figure 5.19: Thermal tuning of the TE mode microring isolator exceeding a FSR.  

 Over 20 dB of optical isolation can be achieved anywhere from 1540 nm to 1580 nm 

with proper tuning, as depicted for few select wavelengths in Fig. 6d. The limitations of 
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the range stem from the deviation of the ring from its critical coupling state, which 

provides the largest extinction ratio. The bandwidth of the polarization rotator could 

also limit the tuning range, but is not a concern for this device. 

 

Figure 5.20: Measurements of isolation bandwidth and wavelength range. 

5.4 MZI optical isolator and circulator for TE mode 

As discussed in Chapter 4, MZI based isolators and circulators are useful when the 

large isolation bandwidth is needed. While TE mode MZI optical isolators have been 

demonstrated before, there has never been a demonstration of a circulator. A TE optical 

circulator is more challenging since the polarization converters must be on every port 

of the MZI. This allows any of the ports to serve as an input port in a PIC. The schematic 

is given in Figure 5.21, although the polarization rotators have not been drawn in for 

simplicity.  
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Figure 5.21: Schematic of the TE mode circulator (not showing polarization rotators) 

The design of the TE mode MZI optical circulator is similar to the devices covered in 

Chapter 4. One significant change from previous devices is the use of broadband 50:50 

splitters formed by a tapered adiabatic coupler, instead of the wavelength sensitive 

directional coupler. The design of this coupler is similar to other adiabatic 50:50 

couplers used in silicon photonics [30], but has Ce:YIG bonded on top. Rather than 

interference based couplers such as directional couplers or MMIs, this coupler operates 

on the principle of mode evolution. The design of this coupler is given below in Figure 

5.22. The coupler begins with two waveguides that are mismatched in width, such that 

they are beta-mismatched and do not couple. In the central region, the two widths are 

brought together, and light from the wider (narrower) input waveguide excites the even 

(odd) supermode of the coupled waveguides. Then, when the two widths are matched, 

the waveguides are separated. The whole process is adiabatic, and near 50:50 splitting 

ratio is observed over 100nm both in simulations as well as experiments. To ensure 

adiabaticity, the overall coupler length is long at 150 microns. The final parameters for 

the adiabatic 50:50 splitter are given in Table 5.4. 
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Figure 5.22: Schematic of the adiabatic 50:50 splitter as well as both simulated and 
experimental coupling values.  

Symbol Description  Size 
w Waveguide width 600 nm 
w1 Waveguide width 700 nm 
w2 Waveguide width 500 nm 
g1 Waveguide distance 6 μm 
g2 Coupler distance 250 nm 
Lt Taper length 100 μm 
Ls1 s-bend 100 μm 
Ls2 s-bend 20 μm 
Lc Coupler length 150 μm 

Table 5.4: Relevant parameters of the adiabatic 50:50 splitter. 

The optical behavior of the TE optical circulator is characterized in the C telecom 

band (1530 nm – 1565 nm). Considering the circulating direction Port 1 → Port 2 → Port 

3 → Port 4 → Port 1, the optical spectra between two adjacent ports are shown on the 

top of Figure 5.23, while the corresponding spectra in the backwards direction are 

reported on the bottom. The operating wavelengths in the direction Port 1 → Port 2 → 

Port 3 →Port 4 → Port 1 are highlighted with the continuous vertical line, while the 

dashed vertical line refers to the Port 1 → Port 4 → Port 3 →Port 2 → Port 1 operating 
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wavelength. The isolation ratio computed between two adjacent ports reaches a 

maximum value of 30 dB near 1555nm, while a minimum isolation larger than 18 dB 

between two adjacent ports is guaranteed across the C-band. The insertion loss of this 

device is between 18 dB and 21 dB and it is measured by comparing it to a straight silicon 

reference waveguide of the same dimensions, however, without the bonded Ce:YIG. 

 

Figure 5.23: Experimental results for the transmission through a narrowband TE mode 
optical circulator. 

To realize an optical circulator that operates across a broader bandwidth, the FSR is 

enlarged by reducing the path difference between the two arms, as was demonstrated 

in Chapter 4. In the case of a 1 μm path difference, the forward and backward optical 

spectra are shown in Figure 5.24. The spectrum is centered at 1560 nm and an optical 

isolation of more than 18 dB is provided between each port pair. The isolation is less 

than the narrowband device, as the phase condition is probably not optimal. Since 

multiple fringes are not visible, it is difficult to know what the best isolation condition is. 

Furthermore, variations in the polarization rotators can degrade the spectra, as it has 

different performance at different wavelengths and some residual TE is not fully 
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converted. In this case, the insertion loss is between 14 dB and 18dB when compared to 

a silicon reference waveguide at 1560 nm. 

 

Figure 5.24: Experimental results for the transmission through a broadband TE mode 
optical circulator 

Summary 

The heterogeneous approach is not suitable to achieve NRPS for TE polarization, due 

to the nature of wafer bonding. Deposition of Ce:YIG on silicon using sputtering or pulsed 

laser deposition can achieve this, but is still in its infancy in terms of material 

development. Faced with a lack of strong optical isolation for TE modes, one option is to 

use polarization rotators. Such rotators can be designed to be broadband and adiabatic. 

Using the Ce:YIG as a part of the rotator simplifies the fabrication, and allows seamless 

integration with the isolator itself. Optical isolators operating for TE mode were 

demonstrated using both a microring and MZI approach, and the first optical circulator 

for TE mode on silicon was also realized. The optical losses for the circulator were large 

but can be straightforwardly reduced by improving design and fabrication on the 

rotators.  
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Single Microring Isolator  
(TE-mode), 3 coil 

Value 

Ring Radius 60 microns 

Coupling Gap 270nm 

Resonance Wavelength Split 0.38nm @ 120mA 

Power Consumption 3mW @ 40mA 

Isolation Ratio 25dB 

20dB Isolation Bandwidth 2 GHz 

Insertion Loss 6.5dB 

 

Narrowband MZI-Circulator 
(TE-mode), 3 coil 

Value 

Common Arm Length 1000 microns 

Arm Imbalance 70 microns 

Designed FSR 10.2nm 

Power Consumption 3.6mW @ 13mA 

Isolation Ratio 30dB 

20dB Isolation Bandwidth 0.6nm 

Insertion Loss 18dB 

 

Broadband MZI-Circulator 
(TE-mode), 3 coil 

Value 

Common Arm Length 1000 microns 

Arm Imbalance 1.25 microns 

Designed FSR 602.8nm 

Power Consumption 3.6mW @ 13mA 

Isolation Ratio 18dB 

20dB Isolation Bandwidth N/A 

Insertion Loss 19dB 
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Chapter 6                                                             

Laser and Isolator integration 

This section will cover ongoing efforts to integrate the optical isolators described in 

previous chapters with an integrated laser. The motivation for this is clear, and will be 

briefly discussed. The heterogeneous silicon/III-V laser is a promising candidate to 

integrate with the isolators, as it shares the same silicon waveguides and bonding 

procedures. The path towards heterogeneous integration of isolators with lasers on 

silicon is outlined and preliminary fabrication and results are discussed.  

6.1 Background and Motivation 

On its own, an optical isolator is not particularly useful. The importance of the device 

is only clear when integrated with a laser. As discussed in the introduction, the best 

placement of the optical isolator is directly after the laser, before the rest of the PIC or 

the light is collected into a fiber. Only then will the results justify the means and added 

complexity of the isolator. However, there have been very few demonstrations of lasers 

integrated with isolators for many reasons (mainly material incompatibility and 

fabrication complexity). 
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One possible solution is to design and fabricate lasers on a garnet substrate. Garnet 

based solid-state lasers are widely used, the most famous of which is the neodymium-

doped yttrium aluminum garnet (Nd:YAG) laser, which emits at 1064nm.  GGG can also 

serve as a host for rare-earth dopants such as Nd [1] or Yb [2], and edge emitting lasers 

using etched planar waveguides on GGG have been demonstrated [3]. The downsides to 

this are obvious. The lasers must be optically pumped and further integration is limited. 

The majority of semiconductor laser and PIC technology is centered at 1.3 and 1.55 

microns due to transparency windows for optical fiber, which is not optimal for garnet 

lasers. Finally, the semiconductor diode laser is too deeply entrenched in industry today 

for laser and isolator integration to take place on garnet substrates. Thus, the focus of 

researchers over the past few decades has been integration on III-V and more recently, 

silicon substrates. 

As mentioned in Chapter 2.3, NRL isolators have been successfully integrated with 

lasers [4], it comes at the cost of high power consumption, large optical loss, and 

additional noise generated by the SOA. They also require strong magnetic fields, which 

is generally seen to be a disadvantage. A “passive” optical isolator such as the NRPS or 

Faraday isolator is preferred. To the best of our knowledge, a laser has never been 

integrated with a Faraday or NRPS based isolator of any kind.  

6.2 Co-design of heterogeneous silicon laser and isolator 

The integration of magneto-optic isolator with a laser on silicon requires some 

careful design and consideration. The first step is to choose the right photonic platform 

to demonstrate such a PIC. Given the choice to use silicon waveguides as a part of the 
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optical isolator, it is natural that a silicon waveguide-based laser such as the 

heterogeneous silicon/III-V laser is used. The design of the heterogeneous silicon/III-V 

laser was the culmination of work from many previous students, and the subject of many 

publications. When considering the addition of an isolator the laser, the overarching 

design strategy was to change as little as possible in the two processes. A few 

modifications did need to be made, which will be highlighted in this section. A detailed 

explanation of the design of the heterogeneous silicon/III-V laser will not be given here, 

and can be found elsewhere [5].  

One of the main design challenges is the mismatch of waveguide dimensions between 

the laser and the isolator. The cross-section of the heterogeneous silicon/III-V laser is 

shown in Figure 6.1. It has a silicon waveguide height of 500nm, which is chosen to 

match the refractive index of the silicon slab with the thick InP gain region.  

 

Figure 6.1: Schematic of the cross-section of a heterogeneous silicon/III-V amplifier waveguide. 
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Figure 6.2: Effective index of various silicon thicknesses at different waveguide widths 
compared with the III-V epitaxial stack. Further details found in  [6]. 

Silicon waveguides thinner than 400nm will suffer from low coupling to the InP [7]. 

However, the optimal silicon thickness for isolators is between 200 and 250nm, as 

explored in Chapter 3. It is possible to transition between the two silicon waveguides 

using a partial etch and taper structure [8], but this roughens the silicon surface, which 

complicates the bonding process. Furthermore, the taper could serve as a source of 

reflections. Since the main purpose of the isolator is to block reflections from reaching 

the laser, the isolator should not introduce significant reflection. The solution explored 

in this work is local oxidation of silicon (LOCOS) [9], which thins down a lithographically 

defined area of the wafer. It can be performed at the start of the process, prior to any 

waveguide etching. 

From a fabrication standpoint, the challenges lie in managing the thermal budget of 

the process, as well as the simultaneous processing of vastly dissimilar materials (III-V, 

silicon, and garnet). While the lattice constant mismatch can be somewhat alleviated by 

wafer bonding, the thermal expansion coefficient mismatch between III-V and silicon 
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provides a limited thermal budget for the process. Rapid thermal anneal performed at 

420C for 2 minutes have degraded laser performance [5], and temperatures should be 

ideally kept below 300C. The monolithic approaches for garnet deposition discussed in 

Chapter 5 may have a difficult time meeting this thermal budget. Studies have shown 

that 650C is required to crystallize YIG  [10], and TIG films are annealed even hotter, at 

900C  [11]. Therefore, if a monolithic approach is pursued, the garnet would have to be 

deposited near the beginning of the process, prior to any III-V bonding to preserve the 

thermal budget for the rest of the process. This could affect subsequent steps and may 

require a complete retooling of the heterogeneous silicon/III-V process. Alternatively, 

bonding of garnet is attractive as it can be added as a back-end process after laser 

fabrication. Since the garnet is already fully crystallized prior to bonding, the thermal 

anneal is not required. In fact, the highest temperature process in isolator fabrication is 

post-bonding anneal 200C, which will not negatively impact the laser performance. The 

inclusion of the isolator processing at the end also reduces the amount of overlap with 

laser fabrication, which simplifies the process greatly. 

The other point of concern is how to know that the isolator is functional once the 

laser is integrated with it. Unlike previous devices, a tunable laser sweep in the forwards 

and backwards direction is not available. Instead, monitor photodiodes are placed in 

strategic locations of the PIC, as shown in Figure 6.3. Two variations of the PIC are 

shown, with a tunable Vernier laser as well as a DFB. One photodiode (PD1) is tapped 

from the output of the laser, to provide a monitor for the lasing power. The remainder 

of the forwards propagating light travels through a polarization rotator to convert from 

TE to TM mode, and into the Ce:YIG region. The silicon transition from 500nm to 220nm 
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is also included right before the polarization rotator. The light goes through an isolator 

(circulator) that is either the microring or MZI configuration, and a portion of the light 

is fed back using a tunable reflector. This consists of a balanced MZI with a loop mirror 

at the end. A heater is used to control the phase of one of the arms, to enable a tunable 

reflection from 0 to 4k(1-k), where k is the power coupling constant of the 2x2 couplers 

in the MZI. Finally, PD3 can be used to measure the amount of light that is dropped across 

the ring or MZI circulator.  

 

 

Figure 6.3: Schematic of the layout of integrated lasers with isolators and circulators. 

Together, each of the PDs enable a monitor on where the light is travelling. The PIC 

can first be tested with the tunable reflector set to a minimum (also maximizing output 

power). Then, the reflection can be increased without turning on the isolator, and the 

laser characteristics can be recorded. Finally, the isolator can be turned on. Monitoring 

the power on the PD can signal when the laser is aligned with the isolation wavelength. 

An alternate way to characterize the isolator is to inject light from a tunable laser source 

from the right side, and monitoring the power measured on PD3 as the laser is swept. 
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This provides a spectral response of the isolator, from which the extinction ratio and 

resonance wavelength can be determined.  

6.3 Fabrication and Preliminary Results 

As previously mentioned, the overall strategy is to change as little as possible from 

the two separate processes, and “stitch” the processes together. The entire fabrication 

flow is depicted in Figure 6.4 and can be roughly divided into silicon processing, III-V 

processing, metallization, and isolator processing. This section will provide an overview 

of the fabrication, but will not go into the details of the heterogeneous silicon/III-V 

process, which can be found elsewhere [5]. Deviations from the “standard” laser process 

flow are highlighted and discussed. 

 

 

Figure 6.4: Complete processing flow for the laser with isolator 
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Figure 6.5: Process flow of the first few silicon processing steps  

The first few steps involve silicon processing, which is outlined in Figure 6.5. The 

fabrication begins with the local oxidation of silicon (LOCOS) to thin the silicon device 

layer down from 500nm to roughly 230nm in the areas where the isolators will be 

fabricated. This is done by taking a blank 500nm SOI wafer, patterning and etching 

alignment marks, and then depositing 2000nm of SiO2 and 200nm of SiN on top of the 

whole wafer. This is followed by dry etching away the SiN in the areas that will be 

thinned down by oxidation. The wet thermal oxidation is then performed at 1050C for 8 

hours, followed by removing the remaining SiO2 and SiN using a combination of dry 

etching and BHF. The two control parameters in this process is the SiO2 thickness and 

the wet oxidation time. The oxide thickness is related to the length of the transition 

between the thinned and un-thinned areas. Thicker oxide provides a more gradual 

transition (longer taper) but slows down the oxidation. The actual thinned amount is 

determined by the oxidation time. Multiple tests showed that 2 microns of SiO2 and 8 
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hours of wet oxidation repeatably thins down the silicon from 500nm to 230nm with a 

transition length around 6 to 8 microns. Ellipsometry shows that while the silicon nitride 

mostly prevents oxidation in the un-thinned areas, there is still some small amount of 

silicon (~10nm) that is consumed. As a result, the final silicon heights after oxidation are 

closer to 490nm and 220nm. 

The images of the LOCOS taper are shown in Figure 6.6, in which a cross-sectional 

view as well as a top-down view are shown. This is from one of the test runs, so the 

silicon heights are a bit off the final values. AFM scans of the thinned and un-thinned 

silicon areas are given in Figure 6.7, showing essentially the same surface quality. This 

is consistent with previous experiments that showed that oxidation preserves the 

surface roughness.  

 

 

Figure 6.6: SEM images of the LOCOS transition 
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Figure 6.7: AFM comparison of the surface quality of the thinned and unthinned silicon 
areas 

Following the LOCOS, a single waveguide etch is used to define the shallow, 231nm 

etch rib waveguides in the laser sections, as well as the fully etched waveguides in the 

isolator sections. This single etch alleviates any need to do precise local alignment and 

guarantees that the waveguide is continuous between the two regions. Following the 

waveguide etch, gratings can be defined where needed, and vertical outgassing channels 

are etched in the silicon.  
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Figure 6.8: Process flow of the III-V bonding and subsequent processing. 

The next steps involve bonding and processing III-V on the silicon, as shown in Figure 

6.8. The III-V epi consists of InAlGaAs multiple quantum well material, with 3 quantum 

wells. The design of the epi is the same as previous work in the group [5]. The III-V is 

bonded to the silicon wafer, making direct contact with the un-thinned areas, followed 

by a 2 hour anneal at 300C. The rest of the wafer is immediately coated with sputtered 

SiO2 to protect them from upcoming processing. The InP substrate is then removed using 

a combination of mechanical polishing and 3:1 HCl:H2O acid. An InGaAs layer (50nm 

thick) serves as an etch stop for the wet etch.  

The laser mesas are fabricated using a methane hydrogen argon (MHA) etch. A liftoff 

hardmask is used to define the P-mesas, which is used for several reasons. A hardmask 

is needed to prevent hydrogen to contaminate the highly doped P-contact layer. It is also 

used due to its high selectivity with InP and InGaAs, since over 1.5 microns is removed 
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during this etch. A liftoff technique is used as it is simpler than the alternative, which is 

to deposit SiO2 everywhere, and proceed to etch the hardmask. Furthermore, due to the 

presence of bond fails that expose the silicon waveguide, the hardmask etch would 

attach the silicon waveguides in those areas. Thus, a liftoff hardmask is used in 

conjunction with DUV lithography, which allows for extremely sharp tapers to be 

formed. This is important to reduce the loss and reflection when transitioning from the 

gain section to the passive silicon waveguides. Following the hardmask liftoff, the P-

mesa is etched using MHA. A typical etch lasts for 35-40 minutes and is tracked using a 

laser monitor. The aluminum containing SCH layers underneath the P-InP naturally 

provide an etch stop, as the MHA etch slows down considerably (roughly 100 times) in 

the SCH, allowing for significant overetch to be performed. Images of the etched P-InP 

taper is shown in Figure 6.9. Sharp (<300nm) features can be achieved, and the 

verticality of the etch is good given the 1.5 micron etch depth.  

 

Figure 6.9: SEM images of the P-InP taper after etching with MHA. 
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The quantum wells are etched using a phosphoric acid mixture, with a photoresist 

mask. The hardmask should remain on during this, as well as the upcoming N-InP etch 

in order to protect the top P-contacts from hydrogen. The N-InP is etched using MHA as 

well, but with a photoresist mask, as the N-layer is much thinner. MHA does not attack 

silicon, so this step can be overetched, much like the P-InP. A lower voltage on the RIE 

tool is used in order to prevent the photoresist from burning, after which it becomes 

nearly impossible to remove. A short BHF dip is performed after the III-V etching is all 

complete in order to remove the P-InP hardmask, as well as any MHA residue on the 

waveguides. The wafer can be “prewet” in DI water before the BHF to prevent the acid 

from penetrating underneath the bonded areas. Since the bond interface between silicon 

and III-V is oxide, it can be attacked by the BHF, which sometimes results in bubbles in 

the mesa, as seen in Figure 6.10. Images of the devices following all III-V etching are 

shown in Figure 6.11.  

 

Figure 6.10: SEM images of residue after the MHA etch using a resist mask and bubbles that 
may form under the mesa after BHF cleaning 
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Figure 6.11: Completed laser mesa structures with transitions to the silicon waveguides. 

Once the III-V processing has concluded, the backend, or metallization of the laser 

diodes begins. First, the entire wafer is covered with a sputtered SiO2 cladding (450nm 

thick), which passivates the laser mesas. Then, vias are etched to expose the highly N-

doped InP, and then the N-metal is put down. A second deposition of SiO2 is deposited 

(450nm thick), before the P-contacts are opened with a second via etch. This is due to 

areas of the laser where the P and N metals overlap and must be separated with oxide to 

prevent a short. The dual via process was established to prevent N-metal peeling 

throughout the process, as was seen in previous fabrication runs. The combination of 

the two via oxides (900nm) is sufficient to separate the silicon waveguides from any 

metal routing or pads, which may induce optical loss. Care must be taken that the N and 

P-metals are actually separated by the second via oxide, as there is significant topology 

to the wafer at this point. Doing the p-metal last also has the benefit that the sidewalls of 

the tapers are completely covered with oxide at that point. Thus, the metal can be 

deposited all around the taper tip, as seen in Figure 6.13. This reduces lithographic 

alignment constraints and helps the taper become pumped, which reduces loss.  
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Figure 6.12: Process flow of the backend metallization of the lasers. 

 

Figure 6.13: SEM images of the lasers after metallization to the n and p contacts is 
complete.  

The P-metal serves as a mask for implantation. Hydrogen implantation is used to 

define the current channels. Finally, heaters (Ti/Pt) and probe metal (Ti/Au) is lifted off. 
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At this point, the laser is fully functional, and can be screened. Thanks to the placement 

of monitor photodiodes alongside each laser, the LIV of the laser can be characterized at 

this point, prior to any isolator fabrication. Up to now, the process has had very minimal 

changes, with the exception of the LOCOS. The following steps were added at the end of 

the laser process to fabricate the isolator. 

 

Figure 6.14: Process flow of the isolator integration after laser processing is complete.  

First, the chip is downsized to individual chiplets. Up until now, the processing has 

all been on a 4” SOI wafer, to take advantage of the superior lithography provided by the 

DUV stepper at UCSB. However, the following steps do not need critical alignment, and 

therefore the i-Line stepper can be used, which handles piece parts. Following dicing the 

wafer into individual dies, the areas that were previously thinned by LOCOS are opened 

up. This is done by masking the die with photoresist, reflowing the resist, and using BHF 
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to strip away the oxide (estimated 1.2 microns thick) on the LOCOS areas. Slight overetch 

is needed to clear up the areas, which need to be clean in order for bonding. However, 

significant overetch is risky as the waveguides in these areas are fully etched, which 

means they are prone to being undercut and breaking. 

 While this process was successfully carried out over multiple test chips, the real chip 

containing lasers encountered some issues with some oxide residue in spots that were 

extremely stubborn to BHF. Since excessive BHF is risky, the call was made to proceed 

with the Ce:YIG bond. In hindsight, it may have been better to etch away these areas with 

dry etch, as voids are preferred over bumps when it comes to bonding. After the bond 

areas have been opened up, the Ce:YIG chips are bonded in place, followed by a SiO2 

sputter deposition, as was detailed in Chapter 3. This does cover up all the electrical pads 

on the lasers, which need to be opened up later. The substrate removal of Ce:YIG 

proceeds as previously discussed, with extreme care taken to level the chip such that 

lasers are not damaged by the polishing. Thinning down to 10 microns was successfully 

achieved with no damage to the surrounding areas. Finally, the electromagnets are 

deposited using evaporated gold and a liftoff process. The last step is to open up the 

contact pads for the lasers and photodiodes, which is done using a dry etch. The chip is 

diced and polished in preparation for testing.  

Unfortunately, due to the problem of residue in the bonding areas, the overall bond 

yield was poor, and only a fraction of the YIG chip bonded successfully. Only a few 

resulting devices were testable, and the laser performance was poor due to some P-

contact issues that created a non-Ohmic contact. For the laser that worked, other 

elements in the PIC were unfunctional, which prevented a complete characterization of 
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the laser with isolator. In particular, a defect in the waveguide near the output facet 

prevented any light from being coupled out. Investigation with an infrared camera 

showed light propagating through the bonded Ce:YIG section, but not leaving the chip. 

Future runs should address the contact issues with the laser. The isolator integration 

seemed to be viable, and the troubles encountered in this run are seen as an unlucky 

break.  

Summary 

A pathway towards heterogeneous integration of lasers with isolators on silicon is 

given. A limited thermal budget means that the preferred approach is to bond the Ce:YIG 

towards the back-end of the process. Fabrication details are given, in which the laser and 

isolator processing were separated as much as possible. Due to some unlucky breaks, 

the preliminary run did not result in any working devices, but ongoing efforts aim to 

make this integration a reality in the near future.  
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Chapter 7                                                         

Beyond optical isolators and circulators 

Now that a pathway towards integration of the isolator with the laser has been 

established, it is useful to examine how the devices might function in real-life PICs. In 

this chapter, we analyze the role of the isolator or circulator in various PIC such as 

optical transmitters, microwave generators, WDM networks, optical sensors, and optical 

switches. Detailed examples of the latter two are given, showing the uses of integrated 

magneto-optic waveguides beyond just optical isolators and circulators.  

7.1 Optical isolators and circulators in PIC 

In the ideal case, an optical isolator would be included after every semiconductor 

laser. However, given the difficulties of integrating the optical isolator, it is important to 

take a deeper look into PICs, and examine which applications really call for an optical 

isolator. 

We begin with possible the most commonly used PIC, which is the optical transmitter 

for data transmission. It consists of a laser followed by an optical modulator (electro-

absorption or phase modulator). Any modulation will induce sidebands onto the optical 
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carrier, with the strength of the sidebands proportional to the RF modulation power. 

The combined effect of this along with the pseudo-random bit sequence (PRBS) 

applicable to data transmission is a “smearing” out of the optical carrier in spectra. Most 

reflections are broadband in nature (with the exception of gratings), so any reflections 

coming after the modulator will not necessarily be at the laser wavelength. Thus, 

narrowband optical isolators such as the microring isolator may not be applicable for 

data transmission. MZI based isolators may be the better fit. 

For analog applications in which purely sinusoidal modulation is used, the microring 

isolator may have some use. Feedback sensitivity is generally characterized by studying 

the relative intensity noise (RIN) of the laser as the feedback into the laser is increased. 

Studies by Morton Photonics have shown that the laser (single-frequency) is more 

tolerant to reflections at wavelengths other than the optical carrier. Combined with the 

fact that the sidebands are always lower than the carrier, this may indicate that 

microring isolators have a fit in these microwave applications. In any case, it is 

advantageous to place the isolator directly after the laser, as was discussed in Chapter 6.  

Another commonly used PIC that would benefit from an optical isolator is a single 

wavelength laser with booster semiconductor optical amplifier (SOA), as shown in 

Figure 7.1. This device is a distributed feedback (DFB) laser with an optical amplifier to 

increase the output power. Ideally, an isolator would be included in between the laser 

and the SOA. Otherwise, the SOA, which emits in both directions, could destabilize the 

laser. This may be seen in broadened linewidths of the laser, as well as mode instability. 

The latter is especially important when the laser itself has poor mode suppression ratio, 

as the additional gain from the SOA will cause undesired modes to lase.  
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Figure 7.1: Schematic of a single-frequency DFB with a booster amplifier. 

Circulators also have many uses in PIC, some of which will be discussed here. The 

primary use is to separate counterpropagating signals. This has tremendous use in many 

sensing systems, which sense reflected light. Without the use of an optical circulator or 

optical isolator, this reflection will be directed into the laser cavity. Optical circulators 

are commonly used with Bragg grating reflectors, to reroute the reflected light to a third 

port. This can be used in WDM networks as add-drop multiplexers [1].  

Circulators also enable bidirectional operation of many PIC. This can open up 

opportunities similar to what is done in reflective erbium amplifiers, in which the same 

length of erbium doped fiber amplifies the light twice by placement of a mirror on one 

end and a circulator on the other [2]. Alternatively, amplification in a bidirectional 

optical link can be achieved [3]. Distributed sensing systems such as OFDR or OTDR 

analyze the amplitude and phase of the reflected light. Thus, an optical circulator or 

optical isolator plus coupler is needed if the full integration of everything except the 

device (fiber) under test is required. Another use of circulators in PIC is in Sagnac-type 

interferometric sensors, such as optical gyroscopes or optical current sensors. This is 

discussed in more detail in the following section.  
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7.2 Magnetic sensors 

The most commonly used magnetic sensor is the Hall effect sensor, which measures 

the voltage difference across an electric conductor that has current flowing transverse 

to an applied magnetic field. However, there are some downsides, as the Hall effect 

sensor is sensitive to electromagnetic interference (EMI), and has rather limited 

dynamic range. Using optics to perform magnetic and current sensing has inherent 

advantages in the sense that the systems are EMI resistant, and have high suppression 

of spurious signals due to the high common-mode rejection of the system. Typical FOC 

are wrapped around the current carrying wire, such that it is only sensitive to magnetic 

fields propagating circularly around the wire. A commercial application of optical 

magnetic sensors is the fiber optic current sensor (FOCS) for current sensing in power 

lines. Commercial power line FOCS can sense currents up to 500kA with an accuracy 

down to 0.1%.  

The operating principle of these FOC is Faraday rotation. As was discussed in Chapter 

2, the polarization of light is rotated in a magnetic medium, which can be detected. 

Alternatively, the interference between two counterpropagating beams of light with 

circular polarization can be detected. This is otherwise known as the Sagnac 

configuration, and most commonly utilized in optical gyroscopes. Most FOC utilize the 

Sagnac approach with silica fiber, which has a Verdet constant of 0.54 rad/(Tm) near 

1550nm [4]. Such a weak effect means that long spools of fiber are needed to achieve 

high sensitivity.  

Compared with standard silica fiber, terbium-doped fiber has a Verdet constant that 

is -32rad/(Tm) at 1060nm, which is 27 times larger [5]. This can be utilized to construct 
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miniaturized FOC was constructed in the polarimetric approach [6], or the 

interferometric approach [7]. The schematic of the interferometric sensor is shown in 

Figure 7.2, in which 10cm of Tb-doped fiber was used as the sensing element. A solenoid 

is used to generate a magnetic field parallel to the length of the fiber. Sensitivities down 

to 0.1mA in the solenoid was achieved, corresponding to 12.5 microtesla of field. Further 

details about this current sensor can be found in [7]. 

 

Figure 7.2: Schematic of the Tb-fiber based interferometric current sensor. 

For this demonstration, the fiber was kept straight, but it would be wound around a 

current carrying wire in a real application. Despite the improvements in Verdet constant, 

the sensitivity could be improved by orders of magnitude if a material such as Ce:YIG 

could be used instead. Furthermore, integration of Ce:YIG clad waveguides with the 

heterogeneous silicon/III-V laser means that the entire magnetic/current sensor could 

be integrated together on a single chip, which dramatically reduces the SWaP + C. This 

is envisioned in  [8], in which the sensitivity of the fully integrated magnetometer is 

predicted reach 20 femtotesla. The other advantage of integration is that the “front-end” 

of the sensor, comprising of all the lasers, modulators, and detectors, could be integrated 

on the same chip as well, as was demonstrated for an optical gyroscope [9].  

However, once the MO sensing component is integrated, it can no longer be wound 

around a current carrying wire. Thus, it loses all the benefits of being resistant to stray 
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magnetic fields, such as the Earth’s magnetic field. One way to address this is to use the 

sensors in sets of three, corresponding to the x, y, and z axis. This is similar to the 

deployment of optical gyroscopes, which can only sense rotation in one axis at a time.  

Alternatively, if a chip consisted of MO waveguides showing NRPS for TE mode as well 

as TM modes, it could provide magnetic field sensing in two axes at once, since the two 

polarizations are sensitive to magnetic fields in different directions.  

 In any case, it is apparent that the integrated MO sensor would be more like a 

magnetic field “point” sensor, rather than a current sensor. Nevertheless, this is a largely 

unexplored area, and could be of interest in the near future, as garnet materials such as 

Ce:YIG possess Verdet constants on the order of 10000 rad/Tm [10].  

7.3 Magneto-optic switches 

Another potential area in which magneto-optic devices may become useful is optical 

switching technologies. The rapid growth in data center networks has placed 

tremendous demand for technological improvements in all aspects, from the 

transceivers to the interfaces and switches. While optical switching is unlikely to 

completely replace electronic switching due to the difficulty in making reliable optical 

memory and buffers, they are very attractive in several switching architectures due to 

their immense bandwidth capacities.  Bandwidth scaling for switch capacity is roughly 

a decade per five years based on historical data [11]. Switches are found in all layers of 

the datacenter networks with various functionalities such as broadcasting or routing. 

These switches have been demonstrated using various technologies, such as MEMs 
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based switches, SOA based switches, MZI networks, and MRR based switches. A 

comprehensive review of optical switching technologies in datacenters is found in [12]. 

While the underlying technology for optical switches is identical to that used for 

optical modulators, a switch is not just a slow modulator. Key differences between the 

two include the necessity of multiple ports for scalability a switch, as well as higher 

requirements for low insertion loss and low crosstalk in a switch [13]. Switching speed 

is important for some, but not all applications, since individual bits are rarely involved 

in the switching. Power consumption is also an important metric, as switching fabrics 

often involve hundreds, or even thousands of individual switch components. Currently, 

almost all optical switches have steady state power consumption. Power is dissipated to 

hold the switch in a state, regardless of the switching methodology (generally electro-

optic or thermo-optic). MEMs and other voltage-controlled switches are better off in this 

sense, since they may only dissipate power in one switching state, and overall power 

consumption is low due to the capacitive nature of the switch. A downside to these is the 

large operating voltage, often in the tens or hundreds of volts [14]. Another voltage-

controlled switch is using a MOS-capacitor, which has been demonstrated in lasers [15] 

and modulators [16]. Dark current is very low in these devices, but optical losses are 

considerable due to the high concentration of free carriers in the waveguide. Even so, 

none of these mechanisms are truly latching.  

Using the magneto-optic effect for switching offers several attractive properties. 

First, ferromagnetism offers a latching, or self-holding behavior for switches that is 

uncommon for optical switches. Self-holding behavior has been observed using phase-

change materials with incident laser pulses [17] or a floating gate transistor embedded 



 

 

180 

in the optics [18]. Recently, a magneto-optic switch with self-holding operation was 

demonstrated by utilizing a thin-film FeCoB stripes above a MZI structure [19]. The 

stripes are magnetized using a silver microstrip, much like the devices in this thesis. The 

FeCoB retains magnetization even after the current pulses through the electromagnet 

die away. A one microsecond current pulse was enough to magnetize the FeCoB.  

 While this is an interesting proof of concept, many improvements can be made. The 

device was fabricated by depositing amorphous silicon on a garnet substrate, so it is not 

compatible with other silicon photonic devices. This is especially important given the 

need for scaling arguments. Microrings may also be a better design, as they are 

significantly smaller in footprint. The devices presented in this work may be suitable for 

future switching applications. The microring optical circulator discussed in Chapter 3 

was further investigated for its switching characteristics [20]. A switching time of 400ps 

was measured, as shown by the eye diagram in Figure 7.3. The figure also shows the 

combined switching of the magneto-optic and thermal effects. The thermal-optic shift is 

much slower (on the order of kHz) compared with the MO switching in the GHz. Thus, 

the thermo-optic shift is not visible in the eye diagram.  
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Figure 7.3: Experimental results of the switching time of the MO microring switch. The 
device used is identical to the microring isolator described in Chapter 3. 

This is limited by the switching of the inductive electromagnet coil. Faster operation 

can be achieved by reducing skin depth effects and lowering the inductance of the 

microstrip, although additional limitations caused by magnetization reversal 

(~2ps)  [21] and photon lifetime (~12ps) in the ring will eventually become relevant. 

No latching behavior was seen in this device, due to the weak remnant magnetization of 

Ce:YIG, so a thin-film magnet is needed in the future.  

The magneto-optic devices are inherently nonreciprocal, so bidirectional 

transmission through the switch is possible. This could lead to a doubling of capacity in 

the switching network. Ultimately, the limiting factor is the optical loss. Losses through 

the MO devices should be reduced to an acceptable level (<1dB per switching element) 

before practical switches can be constructed.  

Summary 

There are many practical uses of optical isolators and circulators in optical systems, 

some of which are presented in this chapter. As for their use in PIC, this is a largely 



 

 

182 

unexplored area given the lack of integrated isolators and circulators. In some cases, the 

only logical placement of the isolator is directly after the laser, which emphasizes laser 

and isolator co-integration, which was discussed in the previous chapter. There are also 

interesting magneto-optic devices outside of isolators. The magnetic sensor and 

magnetic switch are discussed, and the merits of using integrated magneto-optic 

waveguides for each are presented.  
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Chapter 8                                                

Conclusions and Future Outlook 

8.1 Conclusions 

The search for a viable optical isolator and circulator for integrated optics has been 

a topic of interest for researchers for decades. The design for an integrated magneto-

optic waveguide based isolator was proposed decades ago, and all the underlying 

physics and principles of the device are well studied. However, these devices never 

became mainstream due to their fabrication complexity and use of magneto-optic 

materials, which are generally incompatible with the commonly used silicon and III-V 

photonic platforms. Therefore, the isolator problem was ignored and efforts were made 

to bypass the issue completely through careful engineering of the laser and other 

photonic elements to be reflection-free.  

This becomes more and more challenging as the complexity of PICs scale and the 

level of integration grows. With the growth of silicon photonics came progress in 

heterogeneous integration, in order to introduce new materials on silicon. Wafer 

bonding techniques and heterogeneous integration in general provided a new twist to 

the isolator problem, as it allowed for significantly more flexibility when it came to 

device design and the materials available to the researcher. The first wafer-bonded 
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isolator on silicon was demonstrated in 2008 [1], and the first microring based isolator 

was shown in 2011 [2], two years before this work started. The performance of the first 

devices were fairly poor, as expected. The microring isolator only showed 9dB of 

isolation, as it was severely undercoupled. The magnetic field was produced by a small 

neodymium cylinder magnet placed on top of the chip. Due to the size of the magnet, the 

ring radius was 900 microns, which led to the undercoupling of the device.  

Chapter 3 described the improvements made to this pre-existing concept, starting 

from waveguide optimization to the inclusion of an electromagnet. The fabrication 

development leading to the on-chip electromagnet was crucial, as the ring could be 

shrunk down to as low as 20 microns in radius, and critical coupling was achieved. This 

led to a greatly improved isolation ratio of 32dB [3]. Further improvements such as 

increasing the efficiency of the electromagnet, cascading multiple rings [4], and 

demonstrating the first microring circulator [5] were also covered in Chapter 3. A need 

for greater isolation bandwidth led to the results discussed in Chapter 4, where the 

integrated electromagnet was carried over to the more common MZI isolator with great 

success. The electromagnet solution elegantly enables push-pull operation of the device, 

and the ability to tune the strength of the magnetic field enabled flexibility in operating 

the device. The operating wavelength can be freely tuned, and the optimal phase 

conditions can always be achieved with proper tuning [6].  

Despite these improvements and record results, the isolators and circulators were 

still incompatible with typical semiconductor lasers due to their requirement that the 

light be TM polarized. Chapter 5 covered the successful efforts to integrate a polarization 

rotator with the isolator that would allow the devices to be integrated with a TE-
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polarization emitting laser. Both a microring isolator for TE polarization and a MZI 

circulator for TE polarization were demonstrated, both of which were the first of their 

kind [7]. Chapter 6 covers the ongoing efforts to bring everything together, and 

integrated isolators with lasers. A number of challenges such as matching waveguide 

geometries and where to insert the isolator processing into the laser fabrication flow 

were discussed [8]. The full path towards heterogeneous integration of lasers with 

isolators on silicon was established, and a preliminary fabrication run was undertaken. 

While this run did not yield working devices, the problems were identified, and the 

researcher is hopeful that currently ongoing runs will see more success.  

 

8.2 Future Outlook 

A personal opinion of the researcher is that many of the efforts of the scientific 

community to invent a CMOS-compatible optical isolator are misguided. The real focus 

should be to develop a laser-compatible optical isolator. The reason is quite simple. The 

isolator needs to be placed immediately after the laser to be effective. Since silicon lacks 

a native laser, many solutions currently use an off-chip laser to provide light for the 

silicon PIC, through fiber coupling or direct coupling between the chips. In such a 

scenario, an on-chip isolator on the silicon PIC does not provide much value. Facets and 

grating couplers are a major source of reflection, which cannot be avoided unless the 

isolator immediately follows the laser. If the laser and silicon PIC are on different chips, 

an alternative solution to the on-chip isolator is to AR-coat the laser chip and place a 
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free-space or in-line isolator in between the two. Thus, in order for on-chip isolators to 

have real impact, one of two things should happen.  

One way would be to increase the performance of the integrated isolator to the point 

where it rivals the performance of current devices. This is fairly challenging given that 

state of the art dual-stage TGG isolators have >60 dB of isolation with <1 dB of insertion 

loss. One could make the argument that an integrated isolator would offer significant 

cost savings, but such arguments are hard to make without data, and will not be 

discussed here. Alternatively, the motivation is integrating the isolator with the laser on 

the same chip, which can never be achieved otherwise. While the title of this dissertation 

is “Heterogeneously integrated optical isolators and circulators for silicon photonics”, 

the true value of it is the pathway outlined towards how to integrate the isolators with 

lasers. While significant progress has been made throughout this work, there remains 

many points to address. 

 

1. One of the main issues is the large insertion loss of the devices in this work. Further 

investigation into where this loss originates is needed. Various papers quote the loss of 

Ce:YIG anywhere from 10 to 60dB/cm, depending on the growth conditions and subsequent 

anneal conditions. From our measurements, we estimate the loss in the silicon/Ce:YIG 

waveguide to be in the 20-25dB/cm range. Of course, this is a combination of scattering 

losses in silicon, scattering losses at the bond interface, as well as Ce:YIG loss. Our 

conservative estimates then place the loss in Ce:YIG to be on the order of 30-40dB/cm. If this 

can be reduced down to the lower 10dB/cm value, the device performance could improve 

significantly.  

 

2. Significant improvements can be made in the fabrication of these devices. Mechanical 

polishing of the SGGG substrate was reliable at the chip level, but could be much more 

difficult at the wafer level. Ideally, an alternate technique would be developed. If an etch 
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stop layer could be implemented in the garnet stack, as is the case for III-V laser epi, then the 

substrate removal process could be extended to a wafer scale. Alternately, the smart-cut 

technology mentioned in Chapter 3 should be investigated, as it is also a method to transfer 

the thin garnet film. Other methods such as transfer printing could also be applicable.  

 

3. A significant portion of the researcher’s time was spent investigating the deposition of Ce:YIG 

and other garnets. Some of these efforts were outlined in Chapter 5, but ultimately success 

was very limited. However, reliable deposition of garnet would open up many opportunities. 

The garnet should only be deposited where needed, which can be achieved using liftoff 

techniques, or etching. Experiments were taken to verify the liftoff of epitaxially deposited 

garnet, and they were successful, although the films showed little Faraday rotation. If a 

monolithic approach could be adopted, this would also decrease the insertion loss, especially 

in the case of the microring isolator, since the Ce:YIG does not need to interact with the bus 

waveguide at all. Bandwidth concerns of the microring isolator can be partially alleviated by 

inclusion of another ring filter as a part of the design, which would filter out reflections 

outside the isolation bandwidth.  

 

4. Few studies have been done regarding the power handling of integrated isolators. This is 

important, as the isolation ratio should stay constant regardless of the input laser power.  

 

5. The successful integration of isolators with lasers opens up a plethora of opportunities. This 

starts with the simple laser and isolator PIC discussed in Chapter 6 and extends to designs 

such as a unidirectional laser. If the isolator is placed in the cavity of a ring laser, it would 

suppress lasing in one direction. Other applications involving the circulator include Bragg 

grating add-drop filters, which are commonplace in fiber-optics, but have never made an 

appearance in integrated optics. Finally, placing a wideband isolator in between a laser and 

SOA would lead to higher stability of the laser.  

Thus, the work here should serve as a starting point towards realistic laser and 

isolator integration. Products today are packaged with bulk isolators, significantly 

increasing price and size. Therefore, the focus should be on achieving a laser-compatible 

optical isolator, as it doesn’t make much sense to sell an integrated isolator as a discrete 
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component. A laser plus isolator combination is the end goal. Further improvements are 

needed in both device performance as well as process development. This continues to 

be an exciting, active field of research, and should see significant progress in the near 

future.  

References 

1.  Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, "Magneto-optical 
isolator with silicon waveguides fabricated by direct bonding," Appl. Phys. Lett. 
92, (2008). 

2.  M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, "Silicon ring 
isolators with bonded nonreciprocal magneto-optic garnets," Opt. Express 19, 
11740 (2011). 

3.  D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, "Electrically 
driven and thermally tunable integrated optical isolators for silicon photonics," 
IEEE J. Sel. Top. Quantum Electron. 22, (2016). 

4.  P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, "Microring-
Based Optical Isolator and Circulator with Integrated Electromagnet for Silicon 
Photonics," J. Light. Technol. 35, 1429–1437 (2017). 

5.  D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, 
"Dynamically reconfigurable integrated optical circulators," Optica 4, 23 (2017). 

6.  D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, "Integrated 
broadband optical isolators for silicon photonics with over 100nm tuning range," 
Opt. Lett. 42, 4901–4904 (2017). 

7.  P. Pintus, D. Huang, P. A. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, 
"Broadband TE Optical Isolators and Circulators in Silicon Photonics through 
Ce:YIG Bonding," J. Light. Technol. 8724, 1–1 (2019). 

8.  D. Huang, P. Pintus, and J. E. Bowers, "Towards heterogeneous integration of 
optical isolators and circulators with lasers on silicon [Invited]," Opt. Mater. 
Express 8, 2471–2483 (2018). 

 


