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ABSTRACT:Avalanche photodiodes (APDs) on Si operating at optical communication wavelength
band are crucial for the Si-based transceiver application. In this paper, we report the� rst O-band
InAs quantum dot (QD) waveguide APDs monolithically grown on Si with a low dark current of 0.1
nA at unit gain and a responsivity of 0.234 A/W at 1.310� m at unit gain (Š5 V). In the linear gain
mode, the APDs have a maximum gain of 198 and show a clear eye diagram up to 8 Gbit/s. These
QD-based APDs enjoy the bene� t of sharing the same epitaxial layers and processing� ow as QD
lasers, which could potentially facilitate the integration with laser sources on a Si platform.
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Self-assembled quantum dot (QD) semiconductor nano-
structures have attracted intense interest for optoelec-

tronics devices applications due to their unique three-
dimensional carrier con� nement characteristics. Recently, O-
band InAs QD lasers monolithically grown on Si substrate have
been demonstrated with low threshold current, high temper-
ature stability, and record-long device lifetime, which could
potentially overcome the lack of a laser source in Si
photonics.1Š4 Meanwhile, high performance optical ampli-
� ers,5 near-infrared PIN waveguide photodiodes (PDs),6,7 and
midwavelength infrared QD photodetectors8Š10 with similar
QD structures on Si have been recently reported. The three-
dimensional carrier con� nement in the QDs leads to ultralow
dark current density of 3.5× 10Š7A/cm2 in QD PDs directly
grown on (001) Si, together with a decent responsivity of
around 0.2 A/W in the O-band.6

Avalanche photodiodes (APDs) can achieve a high internal
current gain by applying a high reverse bias voltage due to the
avalanche e� ect, which can signi� cantly improve the signal-to-
noise ratio.11 Driven by the increasing applications in optical
communications, monolithic SiŠGe APDs have been demon-
strated with large gain-bandwidth products.12 Recently, InAs
QD APDs heterogeneously integrated on Si have been
reported with a low dark current of 0.01 nA and a high gain
bandwidth product of 240 GHz.13 In this work, we use an
alternative approach through direct epitaxy for better economy
of scale and better integration with QD lasers and demonstrate
the� rst InAs QD APDs monolithically grown on (001) Si with

a low dark current of 0.1 nA in a 3× 50 � m2 device biased at
Š5 V. The corresponding dark current density is as low as 6.7
× 10Š5 A/cm2, which is among the best reported values for any
IIIŠV PDs grown on a Si substrate at the same reverse
bias.14Š17 In addition, the PDs achieve a decent responsivity of
0.234 A/W at 1310 nm at unit gain, limited by coupling into
the photodetector waveguide. The dark current at 99% of
breakdown voltage is 1.3 nA, and an avalanche gain of up to
198 has been demonstrated. Due to RC and carrier trapping
limits, the APDs show a 3 dB bandwidth of 2.26 GHz atŠ6 V.
Temperature studies have been carried out to understand the
physics of the avalanche process in the devices. The limiting
factors of the current device have been analyzed, and future
improvements are discussed. When the high gain and low dark
current performance up to 323 K (50°C) are considered,
these APDs hold great potential for applications in energy-
e� cient interconnects within supercomputers and data centers.

� DEVICE STRUCTURE AND FABRICATION

The structure of the photodiode is shown inFigure 1. The QD
APD structure was grown on a GaAs-on-V-grooved-Si (GoVS)
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substrate, prepared by aspect ratio trapping (ART) in a metalŠ
organic chemical vapor deposition (MOCVD) system.18,19

The APD epitaxial structure was grown in a molecular beam
epitaxy (MBE) system. The active region of the PD consists of
� ve-stacked InAs dot-in-a-well (DWELL) structures with a dot
density of 6× 1010 cmŠ2.

After the material growth, the epitaxial structure was
processed into waveguide-shape APD devices with mesa
widths ranging from 3 to 50� m and mesa lengths of 50� m
by inductive coupled plasma (ICP) etching. After ICP etching,
the sidewall was passivated with a 12 nm atomic-layer
deposited (ALD) Al2O3 together with a 1� m-thick SiO2
layer to help suppress the surface leakage current. Pd/Ti/Pd/
Au and Pd/Ge/Pd/Au were evaporated as metal contact stacks
with a 150 � m pitch-size standard ground-signal-ground
(GSG) pad. Finally, facets were cleaved with no additional
antire� ection coatings. The full device structure is schemati-
cally shown inFigure 2a. Top-view and cross-sectional view
scanning electron microscope (SEM) images of a fabricated
device are shown inFigure 2b,c, respectively.

� MEASUREMENT AND ANALYSIS

The dark current voltage (IŠV) curves of a 3× 50 � m2 APD
device were measured from 260 to 340 K in a low temperature
probe station and recorded by a semiconductor device analyzer
(Keysight 1500) as shown inFigure 3a. The device shows a
very low dark current of 0.1 nA at 300 K under a bias voltage
of Š5 V, which corresponds to a low dark current density of
6.6 × 10Š5A/cm2. This can be attributed to the high crystal
quality and surface passivation of the PD mesa. Moreover, the
dark current at 300 K was measured to be 1.3 nA around
Š15.9 V, which is around 99% of the breakdown voltage (Š16
V). It is also noted that the breakdown voltage of the APD
increases as the temperature increases, which indicates the
dominance of avalanche breakdown over tunneling in the APD
structure. The capacitance voltage (CŠV) characteristics of
several di� erent sizes of APD devices were also measured at
room temperature as shown inFigure 3b; a parasitic
capacitance of 517 fF was extracted on the basis of the device
areaŠcapacitance curve in the inset ofFigure 3b.

The gain versus bias voltage of the device at various
temperatures was measured as shown inFigure 4a with an

Figure 1.Schematic diagram of the InAs QD APD grown on GoVS substrate.

Figure 2.(a) Schematic diagram of the fabricated waveguide photodetector. (b) Top-view and (c) cross-sectional view of the fabricated device.
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input wavelength of 1300 nm. Here, we take the unity gain bias
of Š5 V to make sure the device is fully depleted. The
maximum gain value of 198 was obtained at 293 K (20°C)
and drops to around 73 at 323 K (50°C). It is also noted that
the dark current of the APD is only 33 nA while a maximum
gain value of 198 is achieved at a reverse bias ofŠ15.97 V at
293 K (20°C). This dark current value is more than 2 orders
of magnitude lower than that of Si/Ge APDs,20 InGaAs/
InAlAs APDs on Si,15 and the recent InAs QD APDs
heterogeneously integrated on Si.13 The excess noise of the
APD is also measured by a noise� gure meter as shown in the
Figure 4b. The excess noise is high due to the mixed injection
in the APD device, and further optimization for minimizing the
noise performance is necessary for future work.

Optical response of the APD was measured by coupling light
with a lensed� ber from an O-band tunable laser source to the
cleaved facet of the PDs and adjusting the input polarization by
a polarization controller.Figure 5a shows wavelength depend-
ence of responsivity for a 3× 50� m2 device at di� erent biases.
The input power was� xed atŠ20 dBm so that the APD is not

Figure 3.(a) Temperature dependent measurement of the currentŠvoltage characteristics of a 3× 50 � m2 device. (b) Capacitance voltage
characteristics of devices with di� erent sizes at room temperature. Inset: measured capacitance of a series of devices underŠ5 V bias.

Figure 4.(a) APD gain versus the reverse bias at various temperatures. (b) Excess noise of the APD versus the gain.

Figure 5.Wavelength dependence of APD responsivity at various
biases.
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saturated during the measurement at a high gain condition.
The coupling loss between the spherical-lensed� ber and the
cleaved facet was estimated to be roughly 3 dB, which is
estimated by comparing the measured power from an
integrated sphere power meter and a� ber coupled power
meter of a forward biased laser diode with the same epilayer
structure and the same mesa width of the PD in this work. The
oscillatory features shown in the responsivity plot are due to
the FabryŠPerot resonance between the rear and the front
facets, which has also shown up in other waveguide PD
structures.7 The responsivity of the device atŠ5 V is 0.234 A/
W at 1310 nm and cuts o� around 1360 nm, which
corresponds to the bandgap of the InAs QD materials. The
corresponding absorption coe� cient at 1310 nm is estimated
to be 770 cmŠ1, assuming a con� nement factor of 6.5%. As the
reverse bias increases, the cuto� wavelength red shifts due to
the quantum-con� ned Stark e� ect (QCSE), which shifts the
electron states to lower energies and the hole states to higher
energies, respectively, in the QD layers. At a reverse bias of
15.9 V, the responsivity of the APD around 1310 nm increased
to 4.8 A/W, due to the avalanche gain of around 20 in the
APD structure.

The small-signal frequency responseS21 was measured using
a lightwave-component analyzer (LCA) with a 1310 nm
internal light source. The modulated light from LCA was input
to the PD facet through a lensed� ber. Frequency response
characteristics(S21) of a 3× 50 � m2 device biased at various
voltages are presented inFigure 6a. As shown inFigure 6a, the
3 dB bandwidth increases slightly as the reverse bias increases
fromŠ2 toŠ6 V, which is due to the reduction of both carrier
transport time and carrier emission time out of the quantum

dots as the electrical� eld in the absorption region increases.
The 3 dB bandwidth of the device is 2.26 and 2.06 GHz at the
biases ofŠ6 and Š15.9 V, respectively. The bandwidth
reduction atŠ15.9 V is due to the avalanche buildup time. To
assess the bandwidth limiting factors,S11 characteristics were
measured and the parameters were� tted with an equivalent
circuit model (Figure 6b), as shown inFigure 6c.21,22 The
circuit parameters were de-embedded from theS11 character-
istics, giving rise to a calculated RC limited bandwidth of 5.16
GHz with the corresponding� tting parameters shown inTable
1. This RC limited bandwidth is slightly larger than the

measured bandwidth value; it is expected that the device
performance may be limited by both RC and transit time. As
one of the future works, the semi-insulator Si substrate or thick
benzocyclobutene (BCB) layer or SU8 layer can be used for
material growth and device fabrication to minimize the
parasitic capacitance in the device, which could potentially
improve the RC limited performance.23,24

Figure 7shows the eye diagram of a 3.0× 50� m2 avalanche
photodiode biased atŠ15.9 V and operating at a 2.5, 5, and 8
Gbit/s data rate. 231Š1 pseudorandom binary sequences
(PRBSs) were generated as the data source to drive an O-
band lithium-niobate (LN) modulator, which modulates the
1.31� m optical signal coming from an external tunable laser.
The modulated light signal was controlled to be TE light by a
polarization controller and was used as an input to the device

Figure 6.(a) Small-signal frequency responses of the 3.0× 50� m2 device for various bias voltages. (b) Equivalent circuit model used for the� tting
of the impedance measurement. (c) Measured (red) and� tted (blue) curves of re� ectionS11 characteristics from 10 MHz to 20 GHz atŠ6 V.

Table 1. Fitting Parameters in the Circuit ModelFigure 6b

Rs (� ) Rj (M� ) Cj (fF) Ls (fH) f RC3 dB(GHz)

9.38 800 520 1.08e-9 5.16
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through a spherical lensed� ber with an outputŠinput power of
�Š 3 dBm. Clear eye opening up to a data rate of 8 Gbit/s is
demonstrated, which indicates that these APDs can be used in
an O-band optical communications system. The bit error rate
(BER) test at di� erent bias points was conducted using an
Anritsu Bit Error Rate Tester at 2.5 Gb/s at room temperature,
as shownFigure 8. Photodiodes operated at high gain bias
point ofŠ15.9 V exhibit a signi� cantly improved bit error rate
as compared to the lower bias point with the same input
optical power.

It is also noted that the APD structure demonstrated in this
work is based on the PIN QD structures operated under high
reverse bias. The QD layer here acts as both an absorption
region and a multiplication region, which could cause a high
excess noise in the APD considering the mixed carrier
injection.11 The expected high excess noise of the APD also
limited the signal-to-noise ratio when operated at a high gain
bias point. One way to overcome this drawback is to
incorporate the separated absorption, charge, and multi-
plication avalanche photodiode (SACM-APD) for low noise
and high speed applications.25,26

� CONCLUSIONS
In summary, we reported the� rst InAs QD APDs grown on
(001) Si using the same epitaxial layers and fabrication process
for a QD laser. A low dark current density of 6.7× 10Š5A/cm2

has been achieved, which is more than 2 orders of magnitude
lower than Ge/Si APDs. A high avalanche gain up to 198 was
demonstrated, and the limiting factors of the 3 dB bandwidth
of these QD APDs have been investigated. Open eye diagrams
were measured up to 8 Gbit/s, which show potential for the O-
band optical communications system.
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