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Quantum decoherence of dark pulses in
optical microresonators

Chenghao Lao1,6, Xing Jin1,6, Lin Chang2,6, Heming Wang 3, Zhe Lv1,
Weiqiang Xie3,5, Haowen Shu2, Xingjun Wang 2, John E. Bowers 3 &
Qi-Fan Yang1,4

Quantum fluctuations disrupt the cyclic motions of dissipative Kerr solitons
(DKSs) in nonlinear optical microresonators and consequently cause timing
jitter of the emitted pulse trains. This problem is translated to the performance
of several applications that employDKSs as compact frequency comb sources.
Recently, device manufacturing and noise reduction technologies have
advanced to unveil the quantum properties of DKSs. Here we investigate the
quantum decoherence of DKSs existing in normal-dispersionmicroresonators
known as dark pulses. By virtue of the very large material nonlinearity, we
directly observe the quantum decoherence of dark pulses in an AlGaAs-on-
insulator microresonator, and the underlying dynamical processes are
resolved by injecting stochastic photons into the microresonators. Moreover,
phase correlationmeasurements show that the uniformity of comb spacing of
quantum-limited dark pulses is better than 1.2 × 10−16 and 2.5 × 10−13 when
normalized to the optical carrier frequencies and repetition frequencies,
respectively. Comparing DKSs generated in different material platforms
explicitly confirms the advantages of dark pulses over bright solitons in terms
of quantum-limited coherence. Our work establishes a critical performance
assessment of DKSs, providing guidelines for coherence engineering of chip-
scale optical frequency combs.

Among the many sources causing decoherence of waves in open sys-
tems, quantum fluctuations arising from the perpetual energy
exchange with the surroundings are inevitable1. Quantum deco-
herence is amajor obstacle for quantum information processing and it
also sets a barrier in the classical world, famously exemplified by the
Schawlow-Townes linewidth of lasers2. This fundamental limit is
becoming more important since the precision of laser-based metrol-
ogy is approaching 21 digits3.

It is well known that the decoherence in linear systems can be
quantified by the fluctuation-dissipation theorem4, but is complicated
by the multipartite interaction in nonlinear systems. As multi-mode
optical parametric oscillators, coherently-driven Kerrmicroresonators
provide a fertile ground for investigating nonlinear quantum
dynamics5–7. In these devices, an array of longitudinal modes are
coupled through four-wave mixing – a process seeded by quantum
fluctuations (Fig. 1a). With sufficient pump power, multi-mode lasing
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takes place, giving rise to various waveforms including Turing pat-
terns, modulation instabilities, and dissipative Kerr solitons (DKSs)8. In
particular, DKSs are self-organizedwavepackets that aremanifested as
bright solitons9–15 or dark pulses10,16–22 depending on the group velocity
dispersion (GVD) of the microresonator, and the modes are synchro-
nized to form comb structures in the frequency domain accordingly.
The realization of DKSs in microresonators has enabled coherent
photonic circuitry for metrology23–25 and massively parallel data
processing26–28. Quantum decoherence of DKSs is receiving consider-
able recent interest as it causes timing jitter of the emitted pulse trains
(also referred to as quantum timing jitter) and degrades the mutual
coherence of the comb lines, imposing crucial performance limits to
their potential applications. Such limits have hitherto been predicted29

and observed in bright solitons30–32. However, even quantum-limited
bright solitons have not yet been close to the coherence of bench-top
instruments33. In this work, we seek other waveforms in micro-
resonators with improved coherence, especially dark pulses which
feature compelling power efficiency and spectral flatness for com-
munication and microwave applications27,28.

Results
Unlike bright solitons, so far thequantumdecoherenceprocessof dark
pulses remains unexplored. We first present the theoretical basis
describing the quantum dynamics of DKSs in microresonators. The
evolution of DKSs obeys the Lugiato–Lefever equation29,30,34 (LLE),
expressed in its dimensionless form as

∂ψ
∂τ

= id2
∂2ψ

∂ϕ2 + i∣ψ∣2ψ� ð1 + iζ Þψ+ f + ϵðϕ,τÞ: ð1Þ

The slowly-varying envelope ψ(τ,ϕ) at time τ and angular position ϕ is
studied in the frame that rotates around themicroresonator at the rate
equal to the free spectral range (FSR). The normalized dispersion (d2),
detuning (ζ), and pump (f) are defined in Methods. Quantum
fluctuations are introduced as Langevin force ϵ, which satisfies

hϵðϕ,τÞϵ*ðϕ0,τ0Þi= 2_ω2
on2D1

κnoAeff
δðϕ� ϕ0Þδðτ � τ0Þ, ð2Þ

with ωo the frequency of the pump, no(n2) the linear (nonlinear)
refractive index,D1 the FSR, κ the decay rate of themicroresonator and
Aeff the effective mode area.

At normal GVD, the LLE features two stable continuous-wave
solutions at certain pumping conditions (Fig. 1b). The coexistence of
the two disparate levels in the microresonator is accompanied by
localized wavefronts known as the switching waves (SWs), which
appear in pairs to form dark pulses along with the lower level21,35,36.
Note that the flat-top pulse comprising the upper level and the SWs
are often referred to as platicons16,22. At equilibrium, the relative
position between the SWs (or equivalently the duty cycle defined as
the portion occupied by the upper level) is sustained due to the
balance between gain and loss. By launching more pump power but
keeping other parameters fixed, part of the lower level will be con-
verted to the upper level such that the duty cycle increases21,35. Now
we consider a stochastic force with amplitude ϵn and phase θn exer-
ted on the nth mode relative to the pump, and the resulting effective
pump term yields

∣ f eff ðϕ,τÞ∣≈f + ϵn cosðnϕ+ θnÞ: ð3Þ

The modulated pump divides the microresonator into regimes of net
gain or loss compared with the unperturbed situation, as shown in
Fig. 1c. If an SW is located in the gain regime, its upper level tends to
expand, so that the left SWmoves to the left and the right SWmoves to
the right. Such motions are reversed in the loss regimes. The motions
of individual SWs would interfere to cause aggregate motions of the
dark pulse. Two situations are thus expected: (1) when both SWs are
located in the same regimes, they move in different directions so that
the duty cycle breathes and the pulse energy fluctuates; (2) when they
are located in opposite regimes, they move in the same direction,
causing timing jitter of the dark pulse. The responsivity of the two
types of motions to the noise applied on the nth mode is given by

χ jitter / 1� cosð2πnΛÞ, ð4Þ

χbreathe / 1 + cosð2πnΛÞ, ð5Þ

a

c

Angular coordinate � Angular coordinate �

Jitter

LSW RSW

Breathe

LSW RSW

Gain

Pump

Frequency

Quantum noise

d

b

Loss

Gain

Loss

Relative mode number
0 5025

R
es

po
ns

iv
ity

 (a
rb

.u
ni

ts
)

0

1

Detuning

LSW RSW

Upper level

Lower level

Breathe
Jitter

In
tra

ca
vi

ty
 p

ow
er

Fig. 1 | Quantumdynamics of darkpulses. a Parametric processes in a coherently-
pumped Kerr microresonator. Each longitudinal mode is coupled to vacuum
electromagnetic fields with random amplitudes and phases. b Intensity profile of a
typical dark pulse (left panel). The upper and lower levels correspond to the bis-
table continuous-wave states in the Kerr microresonator (right panel) and are
connected by a pair of switching waves (SWs). LSW left SW, RSW right SW.

cMechanism of quantum-fluctuation-inducedmotions of dark pulses. The cases of
stochastic photons coupled to two different modes are presented. Regimes fea-
turing net gain and loss are indicated by red and blue shadings, respectively. The
arrows show the SWs’moving directions. d Simulated responsivity of a dark pulse’s
motion to quantum fluctuations exerted on a certain longitudinal mode.
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with Λ the duty cycle. The detailed derivation is provided in Supple-
mentary Materials Section IC. Apparently, the responsivity has a peri-
odic dependenceonn.Wenote that, for quantumfluctuations coupled
to modes with indices close to integer multiples of 1/Λ, they tend to
cause breathing-typemotions rather than timing jitter. This conclusion
is validated by the numerically simulated responsivity plotted
in Fig. 1d.

To verify the theoretical model, we perform experiments on
AlGaAs-on-insulator (Al0.2Ga0.8AsOI) platforms, in which the very large
Kerr nonlinearity (n2 = 1.7 × 10−17 m2 W−1)37–39 greatly enhances the
coupling betweenDKSs and quantum fluctuations according to Eq. (2).
The geometry of the microresonator is engineered to achieve normal
dispersion in telecommunication C-band, with intrinsic quality factors
exceeding 1.4 million as displayed in Fig. 2a. By launching 50mW from
a continuous-wave laser into the bus waveguide via a lensed fiber, dark
pulses are generated through a deterministic process as facilitated by
avoided mode crossings10,17,18,20, featuring 100-nm-spanning optical
spectrum and 91.47 GHz repetition frequency (Fig. 2b). Characteriza-
tion of the timing jitter is based on a multi-spectral delayed self-
heterodyne interferometer31,40. As shown in Fig. 2c, the amplified dark
pulse is either frequency-shifted or temporally delayed in two split
pathways, and the recombined signals are sent into a programmable
optical filter. Two comb lines are selected for photodetection with
their phases extracted by the Hilbert transform. According to the
comb structure, their instantaneous phases are defined by the carrier-
envelope offset frequencies, repetition frequencies, andmode indices.
The timing jitter is computed by subtracting the common phases
associated with the carrier-envelope offset frequencies (seeMethods).
The accuracy of such an interferometric approach is further validated
using an electro-optic frequency comb,which is discussed inMethods.

In the experiment, the ±2nd comb lines relative to the pump are
chosen. Themeasured jitter spectral density shown in Fig. 2d is close to
the simulated quantum timing jitter at offset frequencies between
100 kHz and 1MHz and is then limited by photodetection and digi-
tizing noises at higher frequencies. Deliberate calibration is performed
to eliminate noise from other origins. The noise of the pump laser

would induce timing jitter by shifting the spectral envelope center of
the dark pulse via higher-order dispersion12 or avoided-mode-
crossings41. Note that the transduction from the phase noise of the
pump laser to the timing jitter is also influenced by the photothermal
effect at low offset frequencies. Therefore, we reveal this contribution
by aligning the levels of calibration tones observed in both spectra of
timing jitter and laser noise at multiple offset frequencies42. Specifi-
cally, the native intensity noise peak at 65 kHz and a series of artificial
peaks generated byphasemodulation is used. Timing jitter induced by
the inherent thermorefractive noise of the comb-formingmode is also
computed using a finite element solver43. Quantum decoherence
apparently overrides the classical noise at offset frequency beyond
100 kHz.

In view of the 1/f 2 dependence of its spectral density, quantum
decoherence of dark pulses is a diffusion process, in which the var-
iance of wavepacket locations would increase with time at a constant
rate D. The diffusion coefficient D introduced here can be utilized to
evaluate the rates of quantum decoherence regardless of the FSRs of
the devices.We examine the diffusionprocess by additionally injecting
amplified spontaneous emission (ASE) noise into the bus waveguide
(Fig. 3a). The ASE noise generated by an independent optical amplifier
through spontaneous emission is deemed a semi-classical analogy of
the quantum noise30. The timing jitter is observed to be lifted by
increasing the ASE power, while the 1/f 2-trend is maintained. The dif-
fusion coefficients are shown to be linearly dependent on the input
ASE noise power in Fig. 3b, and the total responsivity of timing jitter to
the ASE noise power in the bus waveguide is derived from the fitted
slope as 2.5 ps2 s−1 μW−1. Therefore, the stochastic nature of the diffu-
sion process is confirmed. We further characterize the spectral
dependence of the responsivity by restricting the impact of the ASE
noise to a single mode. It is realized by selecting 40-GHz-span of the
ASE noise using the programmable filter. Line-by-line characterization
of the responsivity is presented in Fig. 3c, which shows a periodic
dependence on the relativemode number. This tendency is consistent
with the mechanism predicted by Eq. (4), validating the SW model of
quantum decoherence.
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respectively. d Measured single-sideband (SSB) jitter spectral density of the dark
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The uncorrelated evolution of the spatially-separated SWs
would deteriorate the uniformity of comb spacing. It is crucial to
the practical implementation of optical-to-microwave conversion,
but cannot be directly inferred from the radiofrequency beatnotes
between the comb lines44. We revisit this issue for quantum-limited
dark pulses by measuring the phase correlations between multiple
comb lines. The protocol is described in Fig. 4a, in which the phase
evolution of three comb lines is simultaneously recorded. Using
one comb line as the common reference, two sets of phase evolu-
tion associated with the repetition frequencies are derived, whose
correlation is expected to be unity if the comb is perfectly equidi-
stant (see Methods). In the experiment, by reference to the 2nd
comb line, we measure the phase correlations between 9 comb
lines with relative mode numbers from −3 to −11, as shown in
Fig. 4b. A bandpass filter spanning 100 kHz to 1MHz is applied on
the phase evolution to eliminate the impact of other noise sources.
The correlations have a mean value of 0.9886 and a standard
deviation of 0.0069, which is primarily limited by the uncorrelated
digitizing and photodetection noises in the measurement. In light
of the 2-Hz fundamental linewidth, we infer that the uniformity of
comb spacing is better than 22.8mHz. It can also be expressed in
relative accuracy44 as 1.2 × 10−16 and 2.5 × 10−13 when normalized to
the optical carrier frequency and repetition frequency, respec-
tively. Such a level of uniformity, which is verified by beating the
dark pulse with an electro-optic frequency comb (see Methods),
should be sufficient for a wide class of microwave photonic
applications45.

Discussion
The quantum decoherence of bright solitons and dark pulses are fur-
ther compared in Fig. 5. Figure 5a showcases two DKSs simulated by
identical parameters except for their opposite GVDs. The evolution of
the pulse location in the rotating frame is computed 2000 times, and
the results are overlaid in Fig. 5b. Statistics of the pulse locations at the
end of the evolution imply that the dark pulse diffuses 4.5 times slower
than its bright counterpart. The corresponding jitter spectral density
of the dark pulse is 13 dB lower than that of the bright soliton (Fig. 5c).
Such advantage of dark pulses, whose originmay havemultiple facets,
is also supported by numerical results using a broader selection of
parameters in Supplementary Materials Section IE. We speculate that
the higher power conversion efficiencies and more concentrated
spectral profiles of the dark pulses benefit the coherence.

So far, several works have reported observations of quantum
decoherence of DKSs. From Eqs. (1) and (2) we define a waveform
factor α as

αðζ ,f ,sgnðd2ÞÞ=
DnoAeffD1ffiffiffiffiffiffiffiffi

∣d2∣
p

n2

: ð6Þ

Although the diffusion coefficient D is related to pumping conditions
and device parameters, α is solely dependent on normalized pumping
conditions (ζ, f) and the sign of the dispersion (sgnðd2Þ), which could
serve as a common basis to compare the rates of quantum deco-
herence of different waveforms. Table 1 shows the results obtained in
silica30,31, Si3N4

32 and AlGaAsOImicroresonators.While the derived α of
bright solitons are larger than 1.92 × 10−5 W, for dark pulse the α can be
as small as 6.5 × 10−6 W. It thus indicates that by choosing dark pulses
the quantum-limited coherence could be improved by at least 5 dB in
practical systems. Indeed, the 2-Hz Lorentzian linewidth of the 91-GHz-
rate microwave signal here is already compelling among integrated
optoelectronic oscillators19,22,45,46. Inferred from Eq. (6), migration to
platformswithweaker Kerr nonlinearity should allow for coherenceon
a par with bench-top instruments.
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Beyond the context of classical frequency combs, our discoveries
have enriched the understanding of quantum dynamics in nonlinear
optical systems. Simple access to the quantum-limited regimes of
DKSs in AlGaAsOImicroresonators is a pivotal step towards harnessing
the quantum optical properties of microresonator frequency combs.
We thus envisage wavelength-multiplexed quantum resources5,47,
multipartite entanglement7 and quantum soliton phenomena48 on
these highly-nonlinear photonic chips.

Methods
Lugiato–Lefever equation and Langevin force
The Lugiato–Lefever equation in its full form reads

∂Aðϕ,TÞ
∂T

= i
D2

2
∂2A

∂ϕ2 + ig∣A∣2A� κ
2
+ iδω

� �
A+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κextPin

_ωo

s
: ð7Þ

Here ∣A∣2 is the photon density, g = _ω2
on2D1

2πnoAeff
is the nonlinear coupling

coefficient, δω is the laser-cavity detuning, κext is the coupling ratewith
the bus waveguide, and Pin is the pump power. This equation is
equivalent to Eq. (1) by introducing ψ=

ffiffiffiffiffiffiffiffiffiffiffi
2g=κ

p
A,τ = κT=2,d2 =

D2=κ,ζ =2δω=κ, and f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8gκextPin=κ3_ωo

p
.

We decompose A into a set of discrete optical modes such that
∑aμeiμϕ =A(ϕ, T). The Langevin force applied on a single mode should
satisfy the fluctuation-dissipation theorem, yielding

<ϵμðTÞϵ*μðT 0Þ> = κ
2
δμμ0δðT � T 0Þ, ð8Þ

<ϵ*μðTÞϵ*μ0 ðT 0Þ>= <ϵμðTÞϵμ0 ðT 0Þ>=0: ð9Þ

δμμ0 is the Kronecker delta. Equation (2) is derived from these spectral
components through discrete Fourier transform

ϵðϕ,TÞ=
X
μ

ϵμðTÞeiμϕ, ð10Þ

which is further normalized following the above-mentioned guideline.

Devices
Themicroresonator used in this work is fabricated on epitaxial AlGaAs
bonded to an oxidized silicon wafer. Deep ultraviolet lithography,
etching, surface passivation, and cladding are employed to define the
structure of the microresonator. More details of the fabrication pro-
cess are provided elsewhere37,38. Themeasuredmode family dispersion
(D2/2π) is−1.63MHz. For darkpulse generation, the temperatureof the
microresonator is set at 23.9 °C to introduce a red-shift of the pump
mode by 2.3GHz as a result of avoided mode crossings.

Timing jitter characterization
The jitter spectral density of the dark pulse is derived from the power
spectral density (PSD) of the relative phases of themeasuredbeatnotes
at the two photodetectors, given by

Stðf Þ=
PSD½Φi �Φj�

ði� jÞ2
1

4D2
1 sin

2πf τd
: ð11Þ

τd is the time delay between the two arms of the interferometer. To
avoid divergence at offset frequencies satisfying sinπf τd =0, we
introduce the cut-off frequency as 1/τd, beyond which only data points
at offset frequencies of (N + 1/2)/τd are plotted with N a positive
integer. The Lorentzian linewidth of the repetition frequency is
inferred from the 1/f2 noise section of jitter spectral density as
2πf 2D2

1St , and the diffusion coefficient D equals 4π2f 2St/3.

Thermorefractive noise
The thermorefractive noise is simulated using a finite-elementmethod
based on the fluctuation-dissipation theorem42,43. Parameters used in
the simulation are: (AlGaAs) material density of AlGaAs 5.008 × 103 kg
m−3, heat capacity 346.4 J kg−1 K−1, thermal conductivity 22.52Wm−1 K−1,
thermo-optic coefficient 6.798 × 10−5 K−1; (silica) material density
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Table 1 | Experimental results on quantum decoherence of DKSs

Material DKS type n0 n2(m2W−1) Aeff (μm2) FSR (GHz) d2 D (ps2s−1) α (×10−5 W) Ref #

Silica Bright 1.45 2.2 × 10−20 18.3 21.9 6.2 × 10−3 2 × 10−2 4.22 30

Bright 1.45 2.2 × 10−20 33.0 9.4 4.7 × 10−3 2.6 × 10−2 4.87 30

Bright 1.45 2.2 × 10−20 44.1 22 8.5 × 10−3 5.8 × 10−3 2.53 31

Si3N4 Bright (Dispersion managed) 2.0 2.2 × 10−19 1.26 89 3.1 × 10−4 5.3 × 10−2 1.92 32

AlGaAsOI Dark 3.3 1.7 × 10−17 0.31 91.5 −4.1 × 10−3 12.1 0.65 This work

Mean values of dispersion and mode area are used to calculate α for the Si3N4 microresonator reported in ref. 32.
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2.2 × 103 kg m−3, heat capacity 703 J kg−1 K−1, thermal conductivity
1.38W m−1 K−1, thermo-optic coefficient 1.2 × 10−5 K−1. During the simu-
lation, ambient temperature (300K) is assumed.

Phase correlation
The phases related to repetition frequencies are derived from two
pairs of comb lines and are noted by Φr1 and Φr2. The correlation r is
given by

r = 1�
R ½Φr1ðtÞ �Φr2ðtÞ�2dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ½Φr1ðtÞ�2dt

R ½Φr2ðtÞ�2dt
q : ð12Þ

The uniformity of comb spacing expressed in relative accuracy is cal-
culated as (1 − r)fL/fopt, in which fL is the Lorentzian linewidth of the
repetition frequency (≈2Hz) and fopt is the optical carrier frequency
(≈194 THz).

Measurement using an electro-optic (EO) frequency comb
We construct an EO comb49 to measure the coherence of the dark
pulse so as to validate the results acquired by the delayed self-
heterodyne method. The setup is described in Fig. 6a, where the EO
comb (frep = 25.4GHz) and the dark pulse microcomb (frep = 91.5GHz)
derived from the same pump laser are combined before sent into a
programmable filter. The timing jitter of the beatnote between the ith
comb line of the EO comb and the jth comb line of the dark pulse is
primarily attributed to

St,beat = j
2St,DP + i

2St,EO: ð13Þ

Once the timing jitter of the EO comb is significantly smaller than that
of the dark pulse, the timing jitter of the dark pulse can be inferred as
St,beat/j2. In the experiment, we choose i = −18 and j = −5 and the noise

data are recorded using a phase noise analyzer (Rohde & Schwarz
FSWP50). The timing jitter of the dark pulse, which is controlled using
excessive ASE noise, is plotted in Fig. 6b. The results inferred from the
EO comb measurement agree well with those obtained using the self-
heterodyne method for high-noise dark pulses. However, if the dark
pulse is operated at its quantum limit, the timing jitter of the EO comb
inheriting from the microwave driver (Keysight 8257D PSG Analog
Signal Generator) becomes the limiting factor, which overrides the
actual timing jitter of the dark pulse at frequency offsets
beyond 40 kHz.

By recording the beatnote using a frequency counter, we derive
the Allan deviation of the repetition frequency of the free-running,
quantum-limited dark pulse. As presented in Fig. 6c, the fractional
Allan deviation of the repetition frequency reaches 5 × 10−9 at 40ms
averaging time. The rise of the Allan deviation at a longer averaging
time is suspected due to the drift of the temperature, pump frequency,
and coupling to the chip. We also characterize the uniformity of the
comb lines by simultaneously comparing the beating frequencies of
two pairs of comb lines44 that are indexed by (i, j) and (2i, 2j). The
deviation from equidistant mode spacing is defined as

ϵ=
f 2
2j

� f 1
j
= 1� 2

f 1
f 2

� �
f 2
2j

, ð14Þ

with f 1
f 2

given by the frequency ratio readings from the frequency
counter. The Allan deviation of ϵ follows τ−0.5 trend with τ the aver-
aging time.When normalized to the optical carrier frequency and the
repetition frequency, the Allan deviation of the comb spacing uni-
formity respectively reaches 9.9 × 10−17 and 2.1 × 10−13 at averaging
time of around 300 s. Furthermore, the distribution of ϵ acquired
with 1-s gate time reveals the mean value of ϵ as 5.4 ± 9.6mHz (inset
of Fig. 6d), which is comparable with results reported in other
literature44.
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Fig. 6 | Coherence of dark pulses measured by an electro-optic (EO) frequency
comb. a Schematic illustration of experimental setup. The EO comb is derived from
the very same pump laser of the dark pulse using cascaded phase modulators and
intensity modulators. Two pairs of comb lines are selected using a programmable
filter for further characterization. b Timing jitter of the dark pulse with different
injected ASE power. Measurements performed using the delayed self-heterodyne
method and the EO comb are plotted as solid and dashed lines, respectively.

c Fractional Allan deviation of the repetition frequency of the free-running dark
pulse. The gate time is set to 1ms. d Allan deviation of the deviation from equidi-
stant mode spacing (ϵ) normalized to optical carrier frequency (fopt) and repetition
frequency (frep). The gate time is set to 10ms. Thedashed line isfitted by the square
root function given in the figure. Inset: distribution of 1001 points of ϵmeasured at
1-s gate time. The red line is a Gaussian fit to the distribution.
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Data availability
The data that support the plot within this paper and other findings of
this study are available at https://doi.org/10.5281/zenodo.769773350.

Code availability
The codes that support the findings of this study are available at
https://doi.org/10.5281/zenodo.769773350.
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